File size: 12,399 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VQ-VAE autoencoder with ViT backbone."""
import functools
from typing import Mapping, Optional, Sequence, Union
from big_vision import utils
from big_vision.models import common
from big_vision.models import vit
import einops
import flax.linen as nn
import flax.training.checkpoints
import jax
import jax.numpy as jnp
import numpy as np
partial = functools.partial
# Multiplicative perturbation applied to codewords when doing the split.
# Note, the multiplicative pertubation is not perfectly symmetric and rep.
# applications can shrink the embedding. However, in practice it does not matter
# for the value we use.
PERTURB = 0.001
# The function below takes a vector `x` and a dictioniary of vectors `e` as an
# input. It then returns a "quantized" version of x (namely the closest to `x`
# vector from `e`) and its index in `e` as well.
# On top of this, it has two extra features:
# 1. Double `vmap` vectorizes this function to operate on many `x` vectors.
# More concretely, we add two extra dimensions (batch and space) to `x`.
# Also note we compute euclidian distance in a decomposed way, because it
# makes it more efficient for vmapping.
# 2. `quantize` is a "discrete" operation, so it does not have a gradient for
# `x`. So we implement a so-called "straight-through" gradient estimator
# using `stop_gradient` magic. It does not affect forward pass, but changes
# the gradient.
@partial(jax.vmap, in_axes=(0, None), out_axes=(0, 0))
@partial(jax.vmap, in_axes=(0, None), out_axes=(0, 0))
def quantize(x, e):
dist = jnp.sum(x * x)[None] - 2 * x.dot(e.T) + jnp.sum(e * e, axis=1)
idx = jnp.argmin(dist)
x_q = jax.lax.stop_gradient(e[idx] - x) + x # just `e[idx]` for the fwd pass.
return x_q, idx
def split_the_most_frequent_embedding(state):
"""Splits most frequent embedding into two and eliminates least frequent.
Args:
state: a dict. that contains current jax rng, embeddings and their counts.
Returns:
New dict. with the updated jax rng, embeddings and counts.
"""
rng, e, c = state["rng"], state["dictionary"], state["counts"]
rng, rng_local = jax.random.split(rng)
i_max = jnp.argmax(c)
i_min = jnp.argmin(c)
e = e.at[i_min].set(
e[i_max] * jax.random.uniform(rng_local, (e.shape[1],), jnp.float32,
1.0-PERTURB, 1.0+PERTURB))
c = c.at[i_min].set(c[i_max] / 2.0)
c = c.at[i_max].set(c[i_max] / 2.0)
e = e.at[i_min].set(e[i_min] / 2.0)
e = e.at[i_max].set(e[i_max] / 2.0)
return {"rng": rng, "dictionary": e, "counts": c}
class Model(nn.Module):
"""ViT model."""
inputs: Mapping[str, Sequence[int]]
outputs: Mapping[str, Sequence[int]]
input_size: Sequence[int] = (256, 256)
patch_size: Sequence[int] = (8, 8)
code_len: int = 256
width: int = 768
enc_depth: int = 6
dec_depth: int = 6
mlp_dim: Optional[int] = None
num_heads: int = 12
posemb: str = "learn" # Can also be "sincos2d"
rep_size: Union[int, bool] = False
dropout: float = 0.0
reinit: Optional[Sequence[str]] = None
head_zeroinit: bool = True
dict_size: int = 512 # Number of words in dict.
codeword_dim: Optional[int] = None
dict_momentum: float = 0.995 # Exp. moving average coeff. for dict. learning.
quantize: bool = True
# Useful to set to None when running without pmap, e.g. testing.
statistics_axis_name: str = "batch"
# Threshold for the discounted count after which the codeword will be
# considered unused. For the `dict_momentum` param of 0.995 the codeword
# should not be present in ~500 batches in a row.
min_count: float = 0.1 # ~= 0.995 ** 500
with_encoder_ctx: bool = False
with_decoder_ctx: bool = False
code_dropout: str = "none"
bottleneck_resize: bool = False
zero_decoder_seq: bool = False
def setup(self):
self.grid_size = np.array(self.input_size) // np.array(self.patch_size)
self.embeddings = {
k: nn.DenseGeneral(features=(self.width,), axis=range(-len(shape), 0),
name=f"embedding_{k}")
for k, shape in self.inputs.items()
}
kw = {"kernel_init": nn.initializers.zeros} if self.head_zeroinit else {}
self.heads = {
k: nn.DenseGeneral(features=shape, name=f"head_{k}", **kw)
for k, shape in self.outputs.items()
}
if self.with_encoder_ctx:
self.stem_conv_ctx_enc = nn.Conv(
self.width, self.patch_size, strides=self.patch_size,
padding="VALID", name="ctx_enc_embedding")
if self.with_decoder_ctx:
self.stem_conv_ctx_dec = nn.Conv(
self.width, self.patch_size, strides=self.patch_size,
padding="VALID", name="ctx_dec_embedding")
self.pos_embedding_encoder = vit.get_posemb(
self, self.posemb, self.grid_size, self.width, "pos_embedding_encoder")
self.encoder = vit.Encoder(
depth=self.enc_depth,
mlp_dim=self.mlp_dim,
num_heads=self.num_heads,
dropout=self.dropout,
name="encoder")
if not self.bottleneck_resize:
self.bottleneck_downsample = self.param(
"bottleneck_downsample",
nn.initializers.xavier_uniform(),
(np.prod(self.grid_size), self.code_len))
norm_init = nn.initializers.normal(stddev=1.0 / np.sqrt(self.dict_size))
self.dictionary = self.variable(
"state", "dictionary",
lambda shape: norm_init(self.make_rng("state"), shape),
(self.dict_size, self.codeword_dim or self.width))
self.counts = self.variable("state", "counts", jnp.ones, (self.dict_size,))
if not self.bottleneck_resize:
self.bottleneck_upsample = self.param(
"bottleneck_upsample",
nn.initializers.xavier_uniform(),
(self.code_len, np.prod(self.grid_size)))
self.pos_embedding_decoder = vit.get_posemb(
self, self.posemb, self.grid_size, self.width, "pos_embedding_decoder")
self.decoder = vit.Encoder(
depth=self.dec_depth,
mlp_dim=self.mlp_dim,
num_heads=self.num_heads,
dropout=self.dropout,
name="decoder")
self.encoder_head = nn.Dense(self.codeword_dim or self.width)
self.decoder_stem = nn.Dense(self.width)
def get_codewords(self):
e = self.dictionary.value / self.counts.value[:, None]
e = e / jnp.linalg.norm(e, axis=-1, keepdims=True)
return e
def encode(self, x, *, ctx=None, train=False, update_dict=True):
out = {}
out["stem"] = {}
for key, embed in self.embeddings.items():
out["stem"][key] = embed(x[key])
x = sum(out["stem"].values())
if self.with_encoder_ctx:
ctx_tokens = self.stem_conv_ctx_enc(ctx)
ctx_tokens = einops.rearrange(ctx_tokens, "b h w c -> b (h w) c")
x = x + ctx_tokens
x, _ = self.encoder(x + self.pos_embedding_encoder, deterministic=not train)
if self.bottleneck_resize:
x = einops.rearrange(x, "b (h w) c -> b h w c",
h=self.grid_size[0], w=self.grid_size[1])
l = int(np.round(self.code_len ** 0.5))
x = jax.image.resize(
x, (x.shape[0], l, l, x.shape[3]),
method="linear")
x = einops.rearrange(x, "b h w c -> b (h w) c")
else:
x = jnp.einsum("btc,tn->bnc", x, self.bottleneck_downsample)
x = self.encoder_head(x)
x = jax.nn.standardize(x, axis=-1)
x_pre_q = out["bottleneck"] = x
e = self.get_codewords()
x, idx = quantize(x, e)
out["bottleneck_q"] = x
out["code"] = idx
# Implements explicit dictionary learning algo outlined in the VQ-VAE paper.
# We slightly deviate from the papers formulation, as we find it confusing,
# especially in the multi-host scenario. What is implemented below can be
# seen as computing discounted counts and sums of all embeddings.
if train:
# Compute counts and sum(x) of code in the global batch.
counts = jnp.zeros(self.dict_size, dtype=jnp.int32)
counts = counts.at[idx].add(1)
# Below we introduce redundant stop_gradient, because jax' dead code
# elimination for our program's gradient fails to infer that the code
# below does not require gradient computation.
# Relevant github issue: https://github.com/google/jax/issues/9042.
# TODO: remove stop_gradient when the bug is fixed.
x_sum = jnp.zeros_like(self.dictionary.value)
x_sum = x_sum.at[idx].add(jax.lax.stop_gradient(x_pre_q))
if self.statistics_axis_name:
counts = jax.lax.psum(counts, axis_name=self.statistics_axis_name)
x_sum = jax.lax.psum(x_sum, axis_name=self.statistics_axis_name)
out["codebook_max_ratio"] = jnp.max(counts) / jnp.sum(counts)
out["codebook_zeros_ratio"] = jnp.sum(counts == 0) / len(counts)
if update_dict:
self.counts.value = self.counts.value * self.dict_momentum + counts
self.dictionary.value = (self.dictionary.value * self.dict_momentum +
x_sum)
state = {"dictionary": self.dictionary.value,
"counts": self.counts.value,
"rng": self.make_rng("vqvae")}
new_state = jax.lax.while_loop(
lambda state: jnp.any(state["counts"] < self.min_count),
split_the_most_frequent_embedding,
state)
self.counts.value = new_state["counts"]
self.dictionary.value = new_state["dictionary"]
if not self.quantize:
x = x_pre_q
out["bottleneck_q"] = x
return x, out
def decode(self, x, ctx=None, discrete_input=False, train=False):
out = {}
if discrete_input:
e = self.get_codewords()
x = e[x]
if self.zero_decoder_seq:
x = jnp.zeros_like(x)
if train and self.code_dropout != "none":
importance = jnp.linspace(1.0, 0.0, self.code_len + 2)[1:-1]
thr = jax.random.uniform(self.make_rng("dropout"), x.shape[:1])
mask = importance[None, :] > thr[:, None]
if self.code_dropout == "random":
mask = jax.random.permutation(
self.make_rng("dropout"), mask, axis=-1, independent=True)
x = x * mask[:, :, None]
x = self.decoder_stem(x)
if self.bottleneck_resize:
l = int(np.round(self.code_len ** 0.5))
x = einops.rearrange(x, "b (h w) c -> b h w c", h=l, w=l)
x = jax.image.resize(
x, (x.shape[0], self.grid_size[0], self.grid_size[1], x.shape[3]),
method="linear")
x = einops.rearrange(x, "b h w c -> b (h w) c")
else:
x = jnp.einsum("bnc,nt->btc", x, self.bottleneck_upsample)
if self.with_decoder_ctx:
ctx_tokens = self.stem_conv_ctx_dec(ctx)
ctx_tokens = einops.rearrange(ctx_tokens, "b h w c -> b (h w) c")
x = x + ctx_tokens
x, _ = self.decoder(x + self.pos_embedding_decoder)
out["logits"] = {}
for key, head in self.heads.items():
out["logits"][key] = head(x)
return out["logits"], out
def __call__(self, x, *, ctx=None, train=False, update_dict=True):
x, out_enc = self.encode(x, ctx=ctx, train=train, update_dict=update_dict)
x, out_dec = self.decode(x, ctx=ctx, train=train)
return x, {**out_enc, **out_dec}
def load(init_params, init_file, model_params=None, dont_load=()):
"""Loads params from init checkpoint and merges into init_params."""
del model_params
ckpt = flax.core.unfreeze(utils.load_checkpoint(None, init_file))
params = {"params": ckpt["params"], "state": ckpt["state"]}
params = flax.training.checkpoints.convert_pre_linen(params)
# Fix old-style param name.
if "Encoder" in params["params"]:
p = params["params"]
p["encoder"] = p.pop("Encoder")
p["decoder"] = p.pop("Decoder")
params["params"] = p
if init_params is not None:
params = common.merge_params(params, init_params, dont_load)
return params["params"], params["state"]
|