File size: 9,524 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Simple vision-text transformer with encoder-decoder architecture.

Used abbreviations for dimension annotations:
  B: batch size.
  H: image height.
  W: image width.
  P: number of patches (PH/PW: number of patches in height/width dimensions).
  E: embedding size.
  L: sequence length of text tokens.
  V: vocab size.
"""
from typing import Sequence
from big_vision import utils
from big_vision.models import common
from big_vision.models import vit
import einops
import flax
import flax.linen as nn
import jax.numpy as jnp
import ml_collections
import numpy as np


def shift_right(x, axis=1):
  """Shift to the right on given axis with padding value 0."""
  pad_widths = [(0, 0)] * len(x.shape)
  pad_widths[axis] = (1, 0)
  padded = jnp.pad(x, pad_widths, constant_values=0)
  return padded[:, :-1]


class EncoderDecoderBlock(nn.Module):
  """Transformer encoder-decoder layer."""
  mlp_dim: int
  num_heads: int
  dropout_rate: float = 0.
  decode: bool = False

  @nn.compact
  def __call__(self, targets, encoded, decoder_mask=None, deterministic=True):
    """Applies EncoderDecoder1DBlock module.

    Args:
      targets: target text embeddings [B, L, E].
      encoded: encoded image patches from encoder [B, P, E].
      decoder_mask: decoder self-attention mask.
      deterministic: bool, deterministic or not (to apply dropout).

    Returns:
      output after transformer encoder-decoder block [B, L, E].
    """
    # Decoder block.
    x = nn.LayerNorm(name="LayerNorm1")(targets)
    x = nn.SelfAttention(
        num_heads=self.num_heads, use_bias=False, broadcast_dropout=False,
        dropout_rate=self.dropout_rate, decode=self.decode, name="SelfAttn")(
            x, decoder_mask, deterministic=deterministic)
    x = nn.Dropout(rate=self.dropout_rate)(x, deterministic=deterministic)
    x = x + targets

    # Encoder-Decoder block.
    y = nn.LayerNorm(name="LayerNorm2")(x)
    y = nn.MultiHeadDotProductAttention(
        num_heads=self.num_heads, use_bias=False, broadcast_dropout=False,
        dropout_rate=self.dropout_rate, name="CrossAttn")(
            y, encoded, deterministic=deterministic)
    y = nn.Dropout(rate=self.dropout_rate)(y, deterministic=deterministic)
    y = y + x

    # MLP block.
    z = nn.LayerNorm(name="LayerNorm3")(y)
    z = vit.MlpBlock(mlp_dim=self.mlp_dim, dropout=self.dropout_rate,
                     name="MLP")(z, deterministic=deterministic)

    return y + z


class Decoder(nn.Module):
  """Transformer Model Decoder for sequence to sequence translation."""
  emb_dim: int
  mlp_dim: int
  num_heads: int
  num_layers: int
  dropout_rate: float = 0.
  output_vocab_size: int = 32000
  zero_decoder_seq: bool = False

  @nn.compact
  def __call__(self,
               encoded,
               targets,
               pos_emb,
               decoder_mask=None,
               decode=False,
               deterministic=True,
               max_decode_length=None):
    """Applies Transformer model on the inputs.

    Args:
      encoded: encoded image patches from encoder [B, P, E].
      targets: target text tokens [B, L].
      pos_emb: positional embeddings.
      decoder_mask: decoder self-attention mask.
      decode: bool, whether to perform fast autoregressive decoding with cache.
      deterministic: bool, deterministic or not (to apply dropout).
      max_decode_length: optional max length for positional embeddings.

    Returns:
      output of a transformer decoder [B, L, V].
    """
    y = targets.astype("int32")
    if not decode:
      y = shift_right(y)
    y = nn.Embed(self.output_vocab_size, self.emb_dim, name="EmbedTargets",
                 embedding_init=nn.initializers.normal(stddev=1.0))(y)
    if self.zero_decoder_seq:
      y = jnp.zeros_like(y)
    y = common.AddPositionEmbs(
        decode=decode, name="PosEmbedTargets")(y, pos_emb)
    y = nn.Dropout(rate=self.dropout_rate)(y, deterministic=deterministic)

    for lyr in range(self.num_layers):
      y = EncoderDecoderBlock(
          num_heads=self.num_heads, mlp_dim=self.mlp_dim,
          dropout_rate=self.dropout_rate, decode=decode,
          name=f"EncDecBlock{lyr}")(y, encoded, decoder_mask=decoder_mask,
                                    deterministic=deterministic)
    y = nn.LayerNorm(name="LayerNorm")(y)
    logits = nn.Dense(self.output_vocab_size, kernel_init=nn.initializers.zeros,
                      name="LogitsDense")(y)
    return logits


class Model(nn.Module):
  """Transformer Model for sequence to sequence translation."""
  patches: ml_collections.ConfigDict
  # Encoder/decoder shared params:
  num_heads: int = 8
  num_layers: int = 6
  mlp_dim: int = 2048
  dropout_rate: float = 0.
  # Decoder params:
  emb_dim: int = 512
  vocab_size: int = 32000
  seq_len: int = 256
  # Encoder params:
  input_size: Sequence[int] = (256, 256)
  posemb_type: str = "sincos2d"  # Can also be "learn"
  zero_decoder_seq: bool = False

  def setup(self):
    grid_size = np.array(self.input_size) // np.array(self.patches.size)
    self.pos_emb_for_encoder = vit.get_posemb(
        self, self.posemb_type, grid_size, self.emb_dim,
        "pos_embedding_encoder")
    self.pos_emb_for_decoder = vit.get_posemb(
        self, self.posemb_type, (1, self.seq_len), self.emb_dim,
        "pos_embedding_decoder")

    self.encoder = vit.Encoder(
        depth=self.num_layers,
        mlp_dim=self.mlp_dim,
        num_heads=self.num_heads,
        dropout=self.dropout_rate)
    self.decoder = Decoder(
        num_layers=self.num_layers,
        mlp_dim=self.mlp_dim,
        num_heads=self.num_heads,
        dropout_rate=self.dropout_rate,
        emb_dim=self.emb_dim,
        output_vocab_size=self.vocab_size,
        zero_decoder_seq=self.zero_decoder_seq,
    )
    self.conv = nn.Conv(self.emb_dim, self.patches.size, padding="VALID",
                        strides=self.patches.size, name="EmbedPatches")

  def encode(self, image, train=False):
    """Encodes input image or embeddings."""
    emb = self.conv(image)
    patch_embeddings = einops.rearrange(emb, "B PH PW E -> B (PH PW) E")
    encoded, _ = self.encoder(
        patch_embeddings + self.pos_emb_for_encoder, deterministic=not train)
    return encoded

  def decode(self, encoded, targets, decode=False, train=False,
             max_decode_length=None):
    """Applies Transformer decoder-branch on encoded-input and target.

    Args:
      encoded: encoded image patches from encoder [B, P, E].
      targets: target text tokens [B, L].
      decode: whether to prepare and use an autoregressive cache.
      train: whether it is training.
      max_decode_length: optional max length for positional embeddings.

    Returns:
      logits array from transformer decoder [B, L, V].
    """
    decoder_mask = None if decode else nn.make_causal_mask(targets)
    logits = self.decoder(
        encoded,
        targets,
        pos_emb=self.pos_emb_for_decoder,
        decoder_mask=decoder_mask,
        decode=decode,
        deterministic=not train,
        max_decode_length=max_decode_length)
    return logits

  def __call__(self, image, text, *, decode=False, train=False):
    """Applies Transformer model on the inputs.

    Args:
      image: batch of images [B, H, W, 3].
      text: batch of tokenized texts [B, L].
      decode: whether to prepare and use an autoregressive cache.
      train: whether it is training.

    Returns:
      logits array from full transformer [B, L, V].
    """
    encoded = self.encode(image, train=train)
    return self.decode(encoded, text, decode=decode, train=train)


def load(init_params, init_files, model_params=None,
         dont_load=("head/kernel", "head/bias", "cls")):
  """Loads params from init checkpoint and merges into init_params."""
  del model_params
  if isinstance(init_files, str):
    # A shortcut for a single file checkpoint of a vtt model.
    ckpt_params = utils.load_params(None, init_files)
    ckpt_params = flax.training.checkpoints.convert_pre_linen(ckpt_params)
    if init_params is not None:
      ckpt_params = common.merge_params(ckpt_params, init_params, dont_load)
  else:
    init_files = {**init_files}  # Shallow copy because we'll pop stuff off.

    enc_init = init_files.pop("encoder", None)
    if enc_init:
      ckpt_params = init_params.copy()
      vit_params = {
          "pos_embedding": ckpt_params["pos_embedding_encoder"],
          "Transformer": ckpt_params["encoder"],
          "embedding": ckpt_params["EmbedPatches"],
      }
      encoder_params = vit.load(
          vit_params, enc_init, model_cfg={},
          dont_load=dont_load)
      ckpt_params["encoder"] = encoder_params["Transformer"]
      ckpt_params["pos_embedding_encoder"] = encoder_params["pos_embedding"]
      ckpt_params["EmbedPatches"] = encoder_params["embedding"]
    else:
      raise ValueError("Only encoder init is supported: {}.".format(init_files))

  return ckpt_params