File size: 18,551 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""A refactored and simplified ViT.

However, the names of modules are made to match the old ones for easy loading.
"""

from typing import Optional, Sequence, Union

from absl import logging
from big_vision import utils
from big_vision.models import common
import flax
import flax.linen as nn
import flax.training.checkpoints
import jax
import jax.numpy as jnp
import numpy as np
import scipy.ndimage


def posemb_sincos_2d(h, w, width, temperature=10_000., dtype=jnp.float32):
  """Follows the MoCo v3 logic."""
  y, x = jnp.mgrid[:h, :w]

  assert width % 4 == 0, "Width must be mult of 4 for sincos posemb"
  omega = jnp.arange(width // 4) / (width // 4 - 1)
  omega = 1. / (temperature**omega)
  y = jnp.einsum("m,d->md", y.flatten(), omega)
  x = jnp.einsum("m,d->md", x.flatten(), omega)
  pe = jnp.concatenate([jnp.sin(x), jnp.cos(x), jnp.sin(y), jnp.cos(y)], axis=1)
  return jnp.asarray(pe, dtype)[None, :, :]


def get_posemb(self, typ, seqshape, width, name, dtype=jnp.float32):
  if typ == "learn":
    return self.param(name, nn.initializers.normal(stddev=1/np.sqrt(width)),
                      (1, np.prod(seqshape), width), dtype)
  elif typ == "sincos2d":
    return posemb_sincos_2d(*seqshape, width, dtype=dtype)
  else:
    raise ValueError(f"Unknown posemb type: {typ}")


class MlpBlock(nn.Module):
  """Transformer MLP / feed-forward block."""
  mlp_dim: Optional[int] = None  # Defaults to 4x input dim
  dropout: float = 0.0
  dtype_mm: str = "float32"

  @nn.compact
  def __call__(self, x, deterministic=True):
    """Applies Transformer MlpBlock module."""
    inits = dict(
        kernel_init=nn.initializers.xavier_uniform(),
        bias_init=nn.initializers.normal(stddev=1e-6),
    )

    n, l, d = x.shape  # pylint: disable=unused-variable
    x = nn.Dense(self.mlp_dim or 4 * d, dtype=self.dtype_mm, **inits)(x)
    x = nn.gelu(x)
    x = nn.Dropout(rate=self.dropout)(x, deterministic)
    x = nn.Dense(d, dtype=self.dtype_mm, **inits)(x)
    return x


class Encoder1DBlock(nn.Module):
  """Single transformer encoder block (MHSA + MLP)."""
  mlp_dim: Optional[int] = None  # Defaults to 4x input dim
  num_heads: int = 12
  dropout: float = 0.0
  dtype_mm: str = "float32"

  @nn.compact
  def __call__(self, x, deterministic=True):
    out = {}
    x = nn.with_logical_constraint(x, ("act_batch", "act_len", "act_emb"))
    y = nn.LayerNorm()(x)
    y = out["sa"] = nn.MultiHeadDotProductAttention(
        num_heads=self.num_heads,
        kernel_init=nn.initializers.xavier_uniform(),
        deterministic=deterministic,
        dtype=self.dtype_mm,
    )(y, y)
    y = nn.with_logical_constraint(y, ("act_batch", "act_len", "act_emb"))
    y = nn.Dropout(rate=self.dropout)(y, deterministic)
    x = out["+sa"] = x + y

    y = nn.LayerNorm()(x)
    y = out["mlp"] = MlpBlock(
        mlp_dim=self.mlp_dim, dropout=self.dropout,
        dtype_mm=self.dtype_mm,
    )(y, deterministic)
    y = nn.with_logical_constraint(y, ("act_batch", "act_len", "act_emb"))
    y = nn.Dropout(rate=self.dropout)(y, deterministic)
    x = out["+mlp"] = x + y
    x = nn.with_logical_constraint(x, ("act_batch", "act_len", "act_emb"))
    return x, out


class Encoder(nn.Module):
  """Transformer Model Encoder for sequence to sequence translation."""
  depth: int
  mlp_dim: Optional[int] = None  # Defaults to 4x input dim
  num_heads: int = 12
  dropout: float = 0.0
  scan: bool = False
  remat_policy: str = "nothing_saveable"
  dtype_mm: str = "float32"

  @nn.compact
  def __call__(self, x, deterministic=True):
    out = {}

    if self.scan:
      block = nn.remat(
          Encoder1DBlock,
          prevent_cse=False,
          static_argnums=(2,),  # 0=self, 2=deterministic
          policy=getattr(jax.checkpoint_policies, self.remat_policy, None),
          )
      x, scan_out = nn.scan(
          block,
          variable_axes={"params": 0},
          split_rngs={"params": True, "dropout": True},
          in_axes=nn.broadcast,
          length=self.depth)(
              name="encoderblock",
              dtype_mm=self.dtype_mm,
              mlp_dim=self.mlp_dim,
              num_heads=self.num_heads,
              dropout=self.dropout)(x, deterministic)
      for lyr in range(self.depth):
        out[f"block{lyr:02d}"] = jax.tree.map(lambda o, l=lyr: o[l], scan_out)
    else:
      # Input Encoder
      for lyr in range(self.depth):
        block_cur = Encoder1DBlock(
            name=f"encoderblock_{lyr}",
            dtype_mm=self.dtype_mm,
            mlp_dim=self.mlp_dim, num_heads=self.num_heads,
            dropout=self.dropout)
        x, out[f"block{lyr:02d}"] = block_cur(x, deterministic)
      out["pre_ln"] = x  # Alias for last block, but without the number in it.

    return nn.LayerNorm(name="encoder_norm")(x), out


class MAPHead(nn.Module):
  """Multihead Attention Pooling."""
  mlp_dim: Optional[int] = None  # Defaults to 4x input dim
  num_heads: int = 12

  @nn.compact
  def __call__(self, x):
    # TODO
    n, l, d = x.shape  # pylint: disable=unused-variable
    probe = self.param("probe", nn.initializers.xavier_uniform(),
                       (1, 1, d), x.dtype)
    probe = jnp.tile(probe, [n, 1, 1])

    x = nn.MultiHeadDotProductAttention(
        num_heads=self.num_heads,
        kernel_init=nn.initializers.xavier_uniform())(probe, x)

    # TODO: dropout on head?
    y = nn.LayerNorm()(x)
    x = x + MlpBlock(mlp_dim=self.mlp_dim)(y)
    return x[:, 0]


class _Model(nn.Module):
  """ViT model."""

  num_classes: Optional[int] = None
  patch_size: Sequence[int] = (16, 16)
  width: int = 768
  depth: int = 12
  mlp_dim: Optional[int] = None  # Defaults to 4x input dim
  num_heads: int = 12
  posemb: str = "learn"  # Can also be "sincos2d"
  rep_size: Union[int, bool] = False
  dropout: float = 0.0
  pool_type: str = "gap"  # Can also be "map" or "tok"
  head_zeroinit: bool = True
  scan: bool = False
  # or "dots_with_no_batch_dims_saveable" for more speed (memory costly)
  remat_policy: str = "nothing_saveable"
  dtype_mm: str = "float32"

  @nn.compact
  def __call__(self, image, *, train=False):
    out = {}

    image = jnp.asarray(image, self.dtype_mm)

    # Patch extraction
    x = out["stem"] = nn.Conv(
        self.width, self.patch_size, strides=self.patch_size,
        padding="VALID", name="embedding", dtype=self.dtype_mm)(image)

    n, h, w, c = x.shape
    x = jnp.reshape(x, [n, h * w, c])

    # Add posemb before adding extra token.
    x = out["with_posemb"] = x + get_posemb(
        self, self.posemb, (h, w), c, "pos_embedding", x.dtype)

    if self.pool_type == "tok":
      cls = self.param("cls", nn.initializers.zeros, (1, 1, c), x.dtype)
      x = jnp.concatenate([jnp.tile(cls, [n, 1, 1]), x], axis=1)

    n, l, c = x.shape  # pylint: disable=unused-variable
    x = nn.Dropout(rate=self.dropout)(x, not train)

    x, out["encoder"] = Encoder(
        depth=self.depth,
        mlp_dim=self.mlp_dim,
        num_heads=self.num_heads,
        dropout=self.dropout,
        scan=self.scan,
        remat_policy=self.remat_policy,
        dtype_mm=self.dtype_mm,
        name="Transformer")(
            x, deterministic=not train)
    encoded = out["encoded"] = x

    if self.pool_type == "map":
      x = out["head_input"] = MAPHead(
          num_heads=self.num_heads, mlp_dim=self.mlp_dim)(x)
    elif self.pool_type == "gap":
      x = out["head_input"] = jnp.mean(x, axis=1)
    elif self.pool_type == "0":
      x = out["head_input"] = x[:, 0]
    elif self.pool_type == "tok":
      x = out["head_input"] = x[:, 0]
      encoded = encoded[:, 1:]
    elif self.pool_type == "none":
      pass
    else:
      raise ValueError(f"Unknown pool type: '{self.pool_type}'")

    x_2d = jnp.reshape(encoded, [n, h, w, -1])

    if self.rep_size:
      rep_size = self.width if self.rep_size is True else self.rep_size
      hid = nn.Dense(rep_size, name="pre_logits")
      # NOTE: In the past we did not include tanh in pre_logits.
      # For few-shot, it should not matter much, as it whitens anyways.
      x_2d = nn.tanh(hid(x_2d))
      x = nn.tanh(hid(x))

    out["pre_logits_2d"] = x_2d
    out["pre_logits"] = x

    if self.num_classes:
      kw = {"kernel_init": nn.initializers.zeros} if self.head_zeroinit else {}
      head = nn.Dense(self.num_classes, name="head", **kw)
      x_2d = out["logits_2d"] = head(x_2d)
      x = out["logits"] = head(x)

    return x, out


def Model(num_classes=None, *, variant=None, **kw):  # pylint: disable=invalid-name
  """Factory function, because linen really don't like what I'm doing!"""
  return _Model(num_classes, **{**decode_variant(variant), **kw})


def decode_variant(variant):
  """Converts a string like "B" or "B/32" into a params dict."""
  if variant is None:
    return {}

  v, patch = variant, {}
  if "/" in variant:
    v, patch = variant.split("/")
    patch = {"patch_size": (int(patch), int(patch))}

  return {
      # pylint:disable=line-too-long
      # Reference: Table 2 of https://arxiv.org/abs/2106.04560.
      "width": {"mu": 32, "Ti": 192, "S": 384, "M": 512, "B": 768, "L": 1024, "So400m": 1152, "H": 1280, "g": 1408, "g-opt": 1536, "G": 1664, "G-opt": 1536, "e": 1792}[v],
      "depth": {"mu": 1, "Ti": 12, "S": 12, "M": 12, "B": 12, "L": 24, "So400m": 27, "H": 32, "g": 40, "g-opt": 40, "G": 48, "G-opt": 48, "e": 56}[v],
      "mlp_dim": {"mu": 128, "Ti": 768, "S": 1536, "M": 2048, "B": 3072, "L": 4096, "So400m": 4304, "H": 5120, "g": 6144, "g-opt": 6144, "G": 8192, "G-opt": 8192, "e": 15360}[v],
      "num_heads": {"mu": 2, "Ti": 3, "S": 6, "M": 8, "B": 12, "L": 16, "So400m": 16, "H": 16, "g": 16, "g-opt": 16, "G": 16, "G-opt": 16, "e": 16}[v],
      # pylint:enable=line-too-long
      **patch
  }


def resample_posemb(old, new):
  """This function implements "high-res finetuning" for transformer models."""
  # Rescale the grid of position embeddings. Param shape is (1,N,1024)
  if old.shape == new.shape:
    return old

  logging.info("ViT: resize %s to %s", old.shape, new.shape)
  gs_old = int(np.sqrt(old.shape[1]))
  gs_new = int(np.sqrt(new.shape[1]))
  logging.info("ViT: grid-size from %s to %s", gs_old, gs_new)
  grid = old.reshape(gs_old, gs_old, -1)

  zoom = (gs_new/gs_old, gs_new/gs_old, 1)
  grid = scipy.ndimage.zoom(grid, zoom, order=1)
  grid = grid.reshape(1, gs_new*gs_new, -1)
  return grid


def fix_old_checkpoints(params):
  """Fix small bwd incompat that can't be resolved with names in model def."""

  params = flax.core.unfreeze(
      flax.training.checkpoints.convert_pre_linen(params))

  # Original ViT paper variant had posemb in a module:
  if "posembed_input" in params["Transformer"]:
    logging.info("ViT: Loading and fixing VERY old posemb")
    posemb = params["Transformer"].pop("posembed_input")
    params["pos_embedding"] = posemb["pos_embedding"]

  # Widely used version before 2022 had posemb in Encoder:
  if "pos_embedding" in params["Transformer"]:
    logging.info("ViT: Loading and fixing old posemb")
    params["pos_embedding"] = params["Transformer"].pop("pos_embedding")

  # Old vit.py used to first concat [cls] token, then add posemb.
  # This means a B/32@224px would have 7x7+1 posembs. This is useless and clumsy
  # so we changed to add posemb then concat [cls]. We can recover the old
  # checkpoint by manually summing [cls] token and its posemb entry.
  if "pos_embedding" in params:
    pe = params["pos_embedding"]
    if int(np.sqrt(pe.shape[1])) ** 2 + 1 == int(pe.shape[1]):
      logging.info("ViT: Loading and fixing combined cls+posemb")
      pe_cls, params["pos_embedding"] = pe[:, :1], pe[:, 1:]
      if "cls" in params:
        params["cls"] += pe_cls

  # MAP-head variants during ViT-G development had it inlined:
  if "probe" in params:
    params["MAPHead_0"] = {
        k: params.pop(k) for k in
        ["probe", "MlpBlock_0", "MultiHeadDotProductAttention_0", "LayerNorm_0"]
    }

  return params


def pyloop_to_scan(params_pyloop):
  """Converts a python for-loop ViT checkpoint to a lax.scan based one."""
  # On a high level, they are the same except that the for loop has separate
  # array pytrees for each encoderblock, while the scan one has just one
  # encoderblock pytree, with all block's params concatenated.

  params_scan = jax.tree.map(lambda x: x, params_pyloop)  # Structural copy
  t = params_scan["Transformer"]

  # Find highest index of encoderblocks in the checkpoint (they start at 0):
  encoderblocks = {k for k in t if k.startswith("encoderblock_")}
  depth = 1 + max({int(k.split("_")[-1]) for k in encoderblocks})

  def stack(*values):
    return np.stack(values)

  # Stack all encoderblocks into a single one:
  t["encoderblock"] = jax.tree.map(
      stack, *[t[f"encoderblock_{lyr}"] for lyr in range(depth)])

  for lyr in range(depth):
    del t[f"encoderblock_{lyr}"]

  return params_scan


def scan_to_pyloop(params_scan):
  """Converts a lax.scan ViT checkpoint to a python for-loop based one."""
  # See comment in pyloop_to_scan.

  params_scan = jax.tree.map(lambda x: x, params_scan)  # Structural copy
  t = params_scan["Transformer"]

  # Find out how many encoderblocks there are
  depth = len(t["encoderblock"]["LayerNorm_0"]["bias"])

  # Create that many encoderblocks, each with their slice of their sub-pytree.
  for lyr in range(depth):
    block = jax.tree.map(lambda x, lyr=lyr: x[lyr], t["encoderblock"])
    t[f"encoderblock_{lyr}"] = block

  del t["encoderblock"]
  return params_scan


def load(init_params, init_file, model_cfg, dont_load=()):  # pylint: disable=invalid-name because we had to CamelCase above.
  """Load init from checkpoint, both old model and this one. +Hi-res posemb."""
  init_file = VANITY_NAMES.get(init_file, init_file)
  restored_params = utils.load_params(init_file)

  restored_params = fix_old_checkpoints(restored_params)

  # Detect attempts to load non-scan checkpoint into scan model.
  if (model_cfg.get("scan") and
      "encoderblock" not in restored_params["Transformer"]):
    restored_params = pyloop_to_scan(restored_params)
  if (not model_cfg.get("scan")
      and "encoderblock" in restored_params["Transformer"]):
    restored_params = scan_to_pyloop(restored_params)

  # possibly use the random init for some of the params (such as, the head).
  restored_params = common.merge_params(restored_params, init_params, dont_load)

  # resample posemb if needed.
  # TODO: Take this from model_cfg to avoid need for init_params.
  if init_params and "pos_embedding" in init_params:
    restored_params["pos_embedding"] = resample_posemb(
        old=restored_params["pos_embedding"],
        new=init_params["pos_embedding"])

  return restored_params


# Shortcut names for some canonical paper checkpoints:
VANITY_NAMES = {
    # pylint: disable=line-too-long
    # Recommended models from https://arxiv.org/abs/2106.10270
    # Many more models at https://github.com/google-research/vision_transformer
    "howto-i21k-Ti/16": "gs://vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz",
    "howto-i21k-S/32": "gs://vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_none-wd_0.1-do_0.0-sd_0.0.npz",
    "howto-i21k-S/16": "gs://vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz",
    "howto-i21k-B/32": "gs://vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0.npz",
    "howto-i21k-B/16": "gs://vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz",
    "howto-i21k-B/8": "gs://vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0.npz",
    "howto-i21k-L/16": "gs://vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_strong1-wd_0.1-do_0.0-sd_0.0.npz",

    # Better plain vit-s16 baselines from https://arxiv.org/abs/2205.01580
    "i1k-s16-90ep": "gs://big_vision/vit_s16_i1k_90ep.npz",
    "i1k-s16-150ep": "gs://big_vision/vit_s16_i1k_150ep.npz",
    "i1k-s16-300ep": "gs://big_vision/vit_s16_i1k_300ep.npz",

    # DeiT-3 checkpoints from https://github.com/facebookresearch/deit/blob/main/README_revenge.md
    # First layer converted to take inputs in [-1,1]
    "deit3_S_224_1k": "gs://big_vision/zoo/deit3/bv_deit_3_small_224_1k.npz",
    "deit3_S_224_21k": "gs://big_vision/zoo/deit3/bv_deit_3_small_224_21k.npz",
    "deit3_S_384_1k": "gs://big_vision/zoo/deit3/bv_deit_3_small_384_1k.npz",
    "deit3_S_384_21k": "gs://big_vision/zoo/deit3/bv_deit_3_small_384_21k.npz",
    "deit3_B_224_1k": "gs://big_vision/zoo/deit3/bv_deit_3_base_224_1k.npz",
    "deit3_B_224_21k": "gs://big_vision/zoo/deit3/bv_deit_3_base_224_21k.npz",
    "deit3_B_384_1k": "gs://big_vision/zoo/deit3/bv_deit_3_base_384_1k.npz",
    "deit3_B_384_21k": "gs://big_vision/zoo/deit3/bv_deit_3_base_384_21k.npz",
    "deit3_L_224_1k": "gs://big_vision/zoo/deit3/bv_deit_3_large_224_1k.npz",
    "deit3_L_224_21k": "gs://big_vision/zoo/deit3/bv_deit_3_large_224_21k.npz",
    "deit3_L_384_1k": "gs://big_vision/zoo/deit3/bv_deit_3_large_384_1k.npz",
    "deit3_L_384_21k": "gs://big_vision/zoo/deit3/bv_deit_3_large_384_21k.npz",

    # SigLIP image encoder checkpoints from https://arxiv.org/abs/2303.15343
    "SigLIP B/16 224": "gs://big_vision/siglip/webli_en_b16_224_63724782.npz:img",
    "SigLIP B/16 256": "gs://big_vision/siglip/webli_en_b16_256_60500360.npz:img",
    "SigLIP B/16 384": "gs://big_vision/siglip/webli_en_b16_384_68578854.npz:img",
    "SigLIP B/16 512": "gs://big_vision/siglip/webli_en_b16_512_68580893.npz:img",
    "SigLIP L/16 256": "gs://big_vision/siglip/webli_en_l16_256_60552751.npz:img",
    "SigLIP L/16 384": "gs://big_vision/siglip/webli_en_l16_384_63634585.npz:img",
    "SigLIP So400m/14 224": "gs://big_vision/siglip/webli_en_so400m_224_57633886.npz:img",
    "SigLIP So400m/14 384": "gs://big_vision/siglip/webli_en_so400m_384_58765454.npz:img",
    "SigLIP B/16-i18n 256": "gs://big_vision/siglip/webli_i18n_b16_256_66117334.npz:img",
    # pylint: enable=line-too-long
}