File size: 8,346 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Gradient transformations and other optax utilities."""
import operator
import big_vision.utils as u
import jax
import jax.numpy as jnp
import optax
def find_states(opt_state, cls):
leaves = jax.tree.leaves(
opt_state, is_leaf=lambda node: isinstance(node, cls))
return [leaf for leaf in leaves if isinstance(leaf, cls)]
def get_count(opt_state, jittable=False):
"""Returns `ScaleByScheduleState.count` from `opt_state` as an integer."""
counts = [
state.count
for state in find_states(opt_state, optax.ScaleByScheduleState)
]
if jittable:
return counts[0]
else:
counts = {int(c) for c in counts}
assert len(counts) == 1, f"Expected exactly 1 ScaleByScheduleState:{counts}"
return next(iter(counts))
def replace_frozen(schedule, pytree, replacement, log=None):
"""Replaces values matching frozen params in `pytree` with `replacement`."""
if not isinstance(schedule, (list, tuple)):
return pytree
masks, scheds = _make_mask_trees(pytree, schedule, log=log)
frozen_mask, _, _ = _split_frozen(masks, scheds)
return jax.tree.map(
lambda v, f: replacement if f else v, pytree, frozen_mask)
def clip_by_per_example_global_norm(
max_norm: float,
) -> optax.GradientTransformation:
"""Clips the norm of per-example gradients."""
def init_fn(params):
del params
return optax.EmptyState()
def update_fn(updates, state, params=None):
del params
grads_flat, grads_treedef = jax.tree_util.tree_flatten(updates)
clipped, _ = optax.per_example_global_norm_clip(grads_flat, max_norm)
return jax.tree_util.tree_unflatten(grads_treedef, clipped), state
return optax.GradientTransformation(init_fn, update_fn)
def make(config, params, *, sched_kw):
"""Returns gradient transform and learning rate functions."""
# Global schedule. No schedule means frozen.
schedule = config.get("schedule", {})
if not isinstance(schedule, (tuple, list)):
schedule = [(".*", schedule)]
masks, scheds = _make_mask_trees(params, schedule, "config.schedule")
frozen_mask, masks, scheds = _split_frozen(masks, scheds)
not_frozen_mask = jax.tree.map(operator.not_, frozen_mask)
def create_schedule(mult=1.0, **kw):
assert "base" not in kw, kw
return u.create_learning_rate_schedule(base=mult, **kw)
schedule_fns = [create_schedule(**sched_kw, **sched) for sched in scheds]
schedule_txs = [
optax.masked(optax.scale_by_schedule(schedule_fn), mask)
for schedule_fn, mask in zip(schedule_fns, masks)
] + [
# Removes weight decay updates. Note that weight decay already has an
# independent mask (which cannot be combined easily with a second mask),
# so instead we multiply updates for frozen params with zero.
optax.masked(optax.set_to_zero(), frozen_mask)
]
# Gradient clipping.
if clip_norm := config.get("grad_clip_norm"):
if config.get("grad_clip_per_example"):
clip_tx = clip_by_per_example_global_norm(clip_norm)
else:
clip_tx = optax.clip_by_global_norm(clip_norm)
grad_clip_norm_tx = optax.masked(clip_tx, not_frozen_mask)
else:
grad_clip_norm_tx = optax.identity()
# Optimizer updates.
tx_func = operator.attrgetter(config.optax_name)(optax)
opt_txs = [optax.masked(tx_func(**config.get("optax", {})), not_frozen_mask)]
assert "optim" not in config, "Deprecated option, use config.optax."
# Learning rate multipliers. Defaults to 1.0.
lr_mult_txs = [optax.scale(config.lr)]
if config.get("lr_mults"):
masks, mults = _make_mask_trees(params, config.lr_mults, "config.lr_mults")
assert all(mult > 0 for mult in mults), (
f"Use schedule=None for parameter freezing instead of lr_mults={mults}")
lr_mult_txs += [
optax.masked(optax.scale(mult), mask)
for mult, mask in zip(mults, masks)
]
# Weight decay. Defaults to 0.0.
# Weight decay is not gradient-based but instead uses "params side-input".
# Hence, weight decay is additive and independent of previous gradient-based
# updates.
assert "weight_decay" not in config, "Deprecated option. Use wd and schedule."
assert config.get("weight_decay_decouple", True), (
"Coupled weight decay not supported anymore.")
if config.get("wd"):
wd_mults = config.get("wd_mults", [(".*/kernel$", 1.0)])
masks, mults = _make_mask_trees(params, wd_mults, "config.wd_mults")
weight_decay_txs = [
optax.add_decayed_weights(config.wd * mult, mask)
for mult, mask in zip(mults, masks)
]
else:
weight_decay_txs = []
# Combine gradient updates and learning rate schedules.
return optax.chain(
grad_clip_norm_tx,
*opt_txs,
*lr_mult_txs,
*weight_decay_txs,
*schedule_txs,
optax.scale(-1.0)), schedule_fns
def _make_mask_trees(params, patterns_values, log):
patterns, values = zip(*patterns_values)
masks = u.make_mask_trees(params, patterns, log=log)
return masks, values
def _split_frozen(masks, scheds):
"""Computes `frozen_mask` and updates `masks` and `scheds`."""
# Specifying `None` as a scheduler freezes params.
all_false = jax.tree.map(lambda *bools: not any(bools), *masks)
not_covered = [k for k, v in u.tree_flatten_with_names(all_false)[0] if v]
assert not not_covered, (
f"All params must be covered (use `None` for freezing): {not_covered}")
frozen_masks = [
mask for mask, sched in zip(masks, scheds) if sched is None]
frozen_mask = jax.tree.map(
lambda *bools: any(bools), *frozen_masks,
all_false) # `all_false` is required when `frozen_masks==[]`.
masks, scheds = zip(*(
(mask, sched) for mask, sched in zip(masks, scheds) if sched is not None))
return frozen_mask, masks, scheds
############ Custom BigVision optimizers #######################################
# Currently there's only one custom optimizer and we don't foresee new ones in
# the near future, we opt not to create a new optimizer folder/module for just
# one isolated case. If there will be more optimizers, we can consider moving
# them into individual files in a subfolder.
# A dummy object to allow for foo.bar access syntax, see
# https://stackoverflow.com/a/19476841/2366315
optax.big_vision = type("", (), {})()
def scale_by_adafactor(min_dim_size_to_factor=32,
decay_rate=0.8, decay_offset=0,
beta2_cap=0.999,
clipping_threshold=None,
momentum=0.9, dtype_momentum=jnp.bfloat16,
eps=1e-30):
"""The BigVision variant of Adafactor optimizer."""
def _decay_rate_pow(i, exponent):
"""Second-order moment decay schedule."""
t = jnp.array(i, jnp.float32) + 1.0
return jnp.minimum(beta2_cap, 1.0 - t**(-exponent))
scale_by_rms = optax.scale_by_factored_rms(
factored=True,
decay_rate=decay_rate,
step_offset=decay_offset,
min_dim_size_to_factor=min_dim_size_to_factor,
epsilon=eps,
decay_rate_fn=_decay_rate_pow)
clip = (optax.clip_by_block_rms(clipping_threshold) if clipping_threshold
else optax.identity())
mom = (optax.ema(momentum, debias=False, accumulator_dtype=dtype_momentum)
if momentum else optax.identity())
return optax.chain(scale_by_rms, clip, mom)
optax.big_vision.scale_by_adafactor = scale_by_adafactor # pytype: disable=module-attr
# A few more aliases we use frequently:
def momentum_hp(momentum=0.9, dtype=jnp.bfloat16, nesterov=False):
"""SGD-Momentum with half-precision accumulator."""
return optax.trace(decay=momentum, accumulator_dtype=dtype, nesterov=nesterov)
optax.big_vision.momentum_hp = momentum_hp # pytype: disable=module-attr
optax.big_vision.sgd = optax.identity # pytype: disable=module-attr
|