File size: 6,006 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for ops_text."""
import copy
from absl.testing import parameterized
import big_vision.pp.ops_text as pp
from big_vision.pp.registry import Registry
import numpy as np
import tensorflow as tf
class PyToTfWrapper:
"""Allows to use `to_{int,str}_tf()` via `to_{int,str}()`."""
def __init__(self, tok):
self.tok = tok
self.bos_token = tok.bos_token
self.eos_token = tok.eos_token
self.vocab_size = tok.vocab_size
def to_int(self, text, *, bos=False, eos=False):
ret = self.tok.to_int_tf_op(text, bos=bos, eos=eos)
if isinstance(ret, tf.RaggedTensor):
return [t.numpy().tolist() for t in ret]
return ret.numpy().tolist()
def to_str(self, tokens, stop_at_eos=True):
ret = self.tok.to_str_tf_op(
tf.ragged.constant(tokens),
stop_at_eos=stop_at_eos,
)
if ret.ndim == 0:
return ret.numpy().decode()
return [t.numpy().decode() for t in ret]
class PpOpsTest(tf.test.TestCase, parameterized.TestCase):
def tfrun(self, ppfn, data):
# Run once as standalone, as could happen eg in colab.
yield {k: np.array(v) for k, v in ppfn(copy.deepcopy(data)).items()}
# And then once again as part of tfdata pipeline.
# You'd be surprised how much these two differ!
tfdata = tf.data.Dataset.from_tensors(copy.deepcopy(data))
for npdata in tfdata.map(ppfn).as_numpy_iterator():
yield npdata
def testtok(self):
# https://github.com/google/sentencepiece/blob/master/python/test/test_model.model
return "test_model.model" # Should we just commit it? It's 200kB
def test_get_pp_clip_i1k_label_names(self):
op = pp.get_pp_clip_i1k_label_names()
labels = op({"label": tf.constant([0, 1])})["labels"].numpy().tolist()
self.assertAllEqual(labels, ["tench", "goldfish"])
@parameterized.parameters((b"Hello world ScAlAr!", b"hello world scalar!"),
(["Decoded Array!"], ["decoded array!"]),
([b"aA", "bB"], [b"aa", "bb"]))
def test_get_lower(self, inputs, expected_output):
op = pp.get_lower()
out = op({"text": tf.constant(inputs)})
self.assertAllEqual(out["text"].numpy(), np.array(expected_output))
@parameterized.named_parameters(
("py", False),
("tf", True),
)
def test_sentencepiece_tokenizer(self, wrap_tok):
tok = pp.SentencepieceTokenizer(self.testtok())
if wrap_tok:
tok = PyToTfWrapper(tok)
self.assertEqual(tok.vocab_size, 1000)
bos, eos = tok.bos_token, tok.eos_token
self.assertEqual(bos, 1)
self.assertEqual(eos, 2)
# Note: test model does NOT have a <pad> token (similar to e.g. "mistral").
# `.to_int()` wraps `.to_int_tf_ops` which is thus also tested
self.assertEqual(tok.to_int("blah"), [80, 180, 60])
self.assertEqual(tok.to_int("blah", bos=True), [bos, 80, 180, 60])
self.assertEqual(tok.to_int("blah", eos=True), [80, 180, 60, eos])
self.assertEqual(
tok.to_int("blah", bos=True, eos=True), [bos, 80, 180, 60, eos]
)
self.assertEqual(
tok.to_int(["blah", "blah blah"]),
[[80, 180, 60], [80, 180, 60, 80, 180, 60]],
)
# inverse of above
# `.to_str()` wraps `.to_str_tf_ops` which is thus also tested
self.assertEqual(tok.to_str([80, 180, 60]), "blah")
self.assertEqual(tok.to_str([1, 80, 180, 60]), "blah")
self.assertEqual(tok.to_str([80, 180, 60, 2]), "blah")
self.assertEqual(
tok.to_str([[80, 180, 60], [80, 180, 60, 80, 180, 60]]),
["blah", "blah blah"],
)
def test_sentencepiece_tokenizer_tf_op_ndarray_input(self):
tok = pp.SentencepieceTokenizer(self.testtok())
bos, eos = tok.bos_token, tok.eos_token
arr = np.array([[bos, 80, 180, 60, eos]] * 2, dtype=np.int32)
self.assertEqual(tok.to_str_tf_op(arr).numpy().tolist(), [b"blah"] * 2)
def test_sentencepiece_tokenizer_tokensets(self):
tok = pp.SentencepieceTokenizer(self.testtok(), tokensets=["loc"])
self.assertEqual(tok.vocab_size, 2024)
self.assertEqual(
tok.to_int("blah<loc0000><loc1023>"), [80, 180, 60, 1000, 2023]
)
def test_sentencepiece_stop_at_eos(self):
tok = pp.SentencepieceTokenizer(self.testtok())
self.assertEqual(tok.to_str([80, 180, 60], stop_at_eos=False), "blah")
eos = tok.eos_token
self.assertEqual(tok.to_str([80, eos, 180, 60], stop_at_eos=False), "blah")
self.assertEqual(tok.to_str([80, eos, 180, 60], stop_at_eos=True), "b")
self.assertEqual(
tok.to_str([[80, eos, 180, 60], [80, 180, eos, 60]], stop_at_eos=True),
["b", "bla"]
)
def test_sentencepiece_extra_tokens(self):
tok = pp.SentencepieceTokenizer(self.testtok())
self.assertEqual(tok.to_str([1, 80, 180, 60, 2], stop_at_eos=False), "blah")
tok = pp.SentencepieceTokenizer(
self.testtok(), tokensets=["sp_extra_tokens"]
)
self.assertEqual(tok.vocab_size, 1001) # Also added the <pad> token.
self.assertEqual(
tok.to_str([1, 80, 180, 60, 2], stop_at_eos=False), "<s> blah</s>"
)
@Registry.register("tokensets.sp_extra_tokens")
def _get_sp_extra_tokens():
# For sentencepiece, adding these tokens will make them visible when decoding.
# If a token is not found (e.g. "<pad>" is not found in "mistral"), then it is
# added to the vocabulary, increasing the vocab_size accordingly.
return ["<s>", "</s>", "<pad>"]
if __name__ == "__main__":
tf.test.main()
|