File size: 6,703 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Preprocessing functions for CLIP with Pixels Only (CLIPPO)."""
from absl import logging
from  big_vision.pp import utils
from big_vision.pp.registry import Registry
import numpy as np
import tensorflow as tf


@Registry.register("preprocess_ops.render_unifont")
@utils.InKeyOutKey(indefault="texts", outdefault="image")
def get_pp_render_text(image_size: int, font_size: int = 16, max_chars=768,
                       background_brightness=127, text_brightness=0,
                       lower=True, monospace=False, spacing=1, min_width=4,
                       resize_method="area"):
  """Renders text as image, using binary Unifont.

  Largely based on Jeffrey Sorensen's text rendering implementation.

  Args:
    image_size: Width/height of output image.
    font_size: Font size to use. Recommended to leave at 16, as this requires
    no resizing, and is safe.
    max_chars: Maximum inpute characters to render, to make faster.
    background_brightness: (r, g, b) of background pixels.
    text_brightness: (r, g, b) of text pixels.
    lower: whether to lowercase.
    monospace: if False, text characters are horizontally trimmed according to
      `spacing` and `minwidth` args.
    spacing: # pixels between each letter.
    min_width: Minimum width of each letter. Useful to make sure e.g. spaces and
      full stops aren't collapsed to nothing.
    resize_method: resize method to use if fontsize != 16.

  Returns:
    Function which renders text as an image.
  """
  bit_embedding = np.zeros((0x200000, 32), dtype=np.uint8)
  colpattern = {64: range(32),
                32: sorted(tuple(range(0, 32, 4)) + tuple(range(2, 32, 4)))}

  unifont_path = "big_vision/pp/proj/clippo/unifont-9.0.06.hex"
  unifont_upper_path = "big_vision/pp/proj/clippo/unifont_upper-9.0.06.hex"

  with tf.io.gfile.GFile(unifont_path) as f:
    for line in f:
      row = int(line[0:4], 16)
      hexbits = line[5:-1]
      bit_embedding[row, colpattern[len(hexbits)]] = bytearray.fromhex(hexbits)

  with tf.io.gfile.GFile(unifont_upper_path) as f:
    for line in f:
      row = int(line[0:6], 16)
      hexbits = line[7:-1]
      bit_embedding[row, colpattern[len(hexbits)]] = bytearray.fromhex(hexbits)

  params = tf.constant(bit_embedding, dtype=tf.uint8)

  def trim_letter(letter):
    """Remove white space based on the letter size."""
    v = tf.reduce_max(letter, axis=0)
    has_pixels = tf.reshape(tf.where(v), (-1,), name="RS5")
    no_pixels = tf.equal(tf.reduce_max(v), 0)
    first = tf.cond(no_pixels, lambda: tf.constant(0, tf.int64),
                    lambda: has_pixels[0])
    last = tf.cond(no_pixels, lambda: tf.constant(0, tf.int64),
                   lambda: has_pixels[-1])

    first = tf.maximum(first - spacing, 0)
    last = tf.maximum(last + spacing, first + min_width)
    return tf.RaggedTensor.from_tensor(tf.transpose(letter[:, first:last]))

  def to_image(rendered, width, height=None):
    """Makes a nice square image from a long string of rendered charcaters."""
    height = height or width
    max_letter_width = tf.reduce_max(rendered.row_lengths(1))
    row_lengths = tf.cast(tf.cumsum(rendered.row_lengths(1)), tf.float32)
    div = tf.cast(width - max_letter_width, tf.float32)  # For rounding errors.
    row_idx = tf.cast(tf.floor(row_lengths / div), tf.int64)
    row_idx = tf.RaggedTensor.from_value_rowids(tf.range(tf.shape(rendered)[0]),
                                                row_idx)
    trimmed = tf.gather(rendered, row_idx, axis=0)
    trimmed = trimmed.merge_dims(1, 2)
    trimmed = trimmed.to_tensor(default_value=0)
    trimmed = tf.transpose(trimmed, (0, 2, 1))
    trimmed = tf.reshape(trimmed, (-1, tf.shape(trimmed)[-1]), name="RS4")
    trimmed = trimmed[:height]

    wpad = width - tf.shape(trimmed)[1]
    hpad = height - tf.shape(trimmed)[0]
    padded = tf.pad(trimmed, [[0, hpad], [0, wpad]])
    tf.assert_equal(tf.shape(padded), tf.constant((height, width)))
    return tf.ensure_shape(padded, (width, height))

  def render(text):
    if lower:
      text = tf.strings.lower(text)
    text = tf.reshape(text, (-1,))[0]
    ids = tf.strings.unicode_decode(text, "UTF-8")
    if max_chars:
      ids = ids[:max_chars]
    embed = tf.nn.embedding_lookup(params, ids)  # Get the letters
    # Each letter is 32 uint8s, but we want binary 16x16 grid.
    # The following does that in a rather hard to parse way.
    vertical = tf.reshape(embed, [1, -1])
    repl = tf.reshape(tf.transpose(tf.tile(vertical, multiples=[8, 1])), [-1])
    ones = tf.ones_like(repl)
    index = tf.cumsum(ones, exclusive=True)
    sevens = tf.cast(tf.fill(tf.shape(repl), 7), tf.uint8)
    moded = tf.bitwise.bitwise_and(index, sevens)
    shifted = tf.bitwise.right_shift(repl,
                                     tf.bitwise.bitwise_xor(moded, sevens))
    anded = tf.bitwise.bitwise_and(shifted, ones)
    # And finally, letters; binary, 0 = background, 1 = letter.
    letters = tf.reshape(anded, [tf.shape(ids)[0], 16, 16])

    if font_size != 16:
      logging.warning("The unifont text rendering function is highly optimized "
                      "for font size 16; using font size %i might lead to "
                      "suboptimal rendering and might degrade performance.",
                      font_size)
      letters = tf.image.resize(letters[..., None], (font_size, font_size),
                                method=resize_method, antialias=True)
      letters = tf.squeeze(letters, axis=-1)

    if monospace:
      letters = tf.RaggedTensor.from_tensor(tf.transpose(letters, (0, 2, 1)))
    else:
      letters = tf.RaggedTensor.from_tensor(letters)
      signature = tf.RaggedTensorSpec(shape=(None, font_size), ragged_rank=1,
                                      dtype=letters.dtype)
      letters = tf.map_fn(trim_letter, letters, fn_output_signature=signature)

    img = to_image(letters, image_size)[..., None]    # A nice square image.
    img *= (text_brightness - background_brightness)  # Rescale value range.
    img += background_brightness

    return tf.image.grayscale_to_rgb(tf.cast(img, tf.uint8))

  return render