File size: 6,703 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Preprocessing functions for CLIP with Pixels Only (CLIPPO)."""
from absl import logging
from big_vision.pp import utils
from big_vision.pp.registry import Registry
import numpy as np
import tensorflow as tf
@Registry.register("preprocess_ops.render_unifont")
@utils.InKeyOutKey(indefault="texts", outdefault="image")
def get_pp_render_text(image_size: int, font_size: int = 16, max_chars=768,
background_brightness=127, text_brightness=0,
lower=True, monospace=False, spacing=1, min_width=4,
resize_method="area"):
"""Renders text as image, using binary Unifont.
Largely based on Jeffrey Sorensen's text rendering implementation.
Args:
image_size: Width/height of output image.
font_size: Font size to use. Recommended to leave at 16, as this requires
no resizing, and is safe.
max_chars: Maximum inpute characters to render, to make faster.
background_brightness: (r, g, b) of background pixels.
text_brightness: (r, g, b) of text pixels.
lower: whether to lowercase.
monospace: if False, text characters are horizontally trimmed according to
`spacing` and `minwidth` args.
spacing: # pixels between each letter.
min_width: Minimum width of each letter. Useful to make sure e.g. spaces and
full stops aren't collapsed to nothing.
resize_method: resize method to use if fontsize != 16.
Returns:
Function which renders text as an image.
"""
bit_embedding = np.zeros((0x200000, 32), dtype=np.uint8)
colpattern = {64: range(32),
32: sorted(tuple(range(0, 32, 4)) + tuple(range(2, 32, 4)))}
unifont_path = "big_vision/pp/proj/clippo/unifont-9.0.06.hex"
unifont_upper_path = "big_vision/pp/proj/clippo/unifont_upper-9.0.06.hex"
with tf.io.gfile.GFile(unifont_path) as f:
for line in f:
row = int(line[0:4], 16)
hexbits = line[5:-1]
bit_embedding[row, colpattern[len(hexbits)]] = bytearray.fromhex(hexbits)
with tf.io.gfile.GFile(unifont_upper_path) as f:
for line in f:
row = int(line[0:6], 16)
hexbits = line[7:-1]
bit_embedding[row, colpattern[len(hexbits)]] = bytearray.fromhex(hexbits)
params = tf.constant(bit_embedding, dtype=tf.uint8)
def trim_letter(letter):
"""Remove white space based on the letter size."""
v = tf.reduce_max(letter, axis=0)
has_pixels = tf.reshape(tf.where(v), (-1,), name="RS5")
no_pixels = tf.equal(tf.reduce_max(v), 0)
first = tf.cond(no_pixels, lambda: tf.constant(0, tf.int64),
lambda: has_pixels[0])
last = tf.cond(no_pixels, lambda: tf.constant(0, tf.int64),
lambda: has_pixels[-1])
first = tf.maximum(first - spacing, 0)
last = tf.maximum(last + spacing, first + min_width)
return tf.RaggedTensor.from_tensor(tf.transpose(letter[:, first:last]))
def to_image(rendered, width, height=None):
"""Makes a nice square image from a long string of rendered charcaters."""
height = height or width
max_letter_width = tf.reduce_max(rendered.row_lengths(1))
row_lengths = tf.cast(tf.cumsum(rendered.row_lengths(1)), tf.float32)
div = tf.cast(width - max_letter_width, tf.float32) # For rounding errors.
row_idx = tf.cast(tf.floor(row_lengths / div), tf.int64)
row_idx = tf.RaggedTensor.from_value_rowids(tf.range(tf.shape(rendered)[0]),
row_idx)
trimmed = tf.gather(rendered, row_idx, axis=0)
trimmed = trimmed.merge_dims(1, 2)
trimmed = trimmed.to_tensor(default_value=0)
trimmed = tf.transpose(trimmed, (0, 2, 1))
trimmed = tf.reshape(trimmed, (-1, tf.shape(trimmed)[-1]), name="RS4")
trimmed = trimmed[:height]
wpad = width - tf.shape(trimmed)[1]
hpad = height - tf.shape(trimmed)[0]
padded = tf.pad(trimmed, [[0, hpad], [0, wpad]])
tf.assert_equal(tf.shape(padded), tf.constant((height, width)))
return tf.ensure_shape(padded, (width, height))
def render(text):
if lower:
text = tf.strings.lower(text)
text = tf.reshape(text, (-1,))[0]
ids = tf.strings.unicode_decode(text, "UTF-8")
if max_chars:
ids = ids[:max_chars]
embed = tf.nn.embedding_lookup(params, ids) # Get the letters
# Each letter is 32 uint8s, but we want binary 16x16 grid.
# The following does that in a rather hard to parse way.
vertical = tf.reshape(embed, [1, -1])
repl = tf.reshape(tf.transpose(tf.tile(vertical, multiples=[8, 1])), [-1])
ones = tf.ones_like(repl)
index = tf.cumsum(ones, exclusive=True)
sevens = tf.cast(tf.fill(tf.shape(repl), 7), tf.uint8)
moded = tf.bitwise.bitwise_and(index, sevens)
shifted = tf.bitwise.right_shift(repl,
tf.bitwise.bitwise_xor(moded, sevens))
anded = tf.bitwise.bitwise_and(shifted, ones)
# And finally, letters; binary, 0 = background, 1 = letter.
letters = tf.reshape(anded, [tf.shape(ids)[0], 16, 16])
if font_size != 16:
logging.warning("The unifont text rendering function is highly optimized "
"for font size 16; using font size %i might lead to "
"suboptimal rendering and might degrade performance.",
font_size)
letters = tf.image.resize(letters[..., None], (font_size, font_size),
method=resize_method, antialias=True)
letters = tf.squeeze(letters, axis=-1)
if monospace:
letters = tf.RaggedTensor.from_tensor(tf.transpose(letters, (0, 2, 1)))
else:
letters = tf.RaggedTensor.from_tensor(letters)
signature = tf.RaggedTensorSpec(shape=(None, font_size), ragged_rank=1,
dtype=letters.dtype)
letters = tf.map_fn(trim_letter, letters, fn_output_signature=signature)
img = to_image(letters, image_size)[..., None] # A nice square image.
img *= (text_brightness - background_brightness) # Rescale value range.
img += background_brightness
return tf.image.grayscale_to_rgb(tf.cast(img, tf.uint8))
return render
|