File size: 1,976 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for bert_ops."""

import tempfile

from big_vision import input_pipeline
import big_vision.pp.builder as pp_builder
import big_vision.pp.ops_general  # pylint: disable=unused-import
from big_vision.pp.proj.flaxformer import bert_ops  # pylint: disable=unused-import
import tensorflow as tf


# BERT vocabulary for testing.
_BERT_VOCAB = [
    "[PAD]",
    "[UNK]",
    "more",
    "than",
    "one",
    "[CLS]",
    "[SEP]",
]


def _create_ds(pp_str, tensor_slices, num_examples):
  return input_pipeline.make_for_inference(
      tf.data.Dataset.from_tensor_slices(tensor_slices),
      num_ex_per_process=[num_examples],
      preprocess_fn=pp_builder.get_preprocess_fn(pp_str),
      batch_size=num_examples,
  )[0]


class BertOpsTest(tf.test.TestCase):

  def test_tokenize(self):
    inkey = "texts"
    vocab_path = f"{tempfile.mkdtemp()}/vocab.txt"
    with open(vocab_path, "w") as f:
      f.write("\n".join(_BERT_VOCAB))
    pp_str = (
        f"bert_tokenize(inkey='{inkey}', vocab_path='{vocab_path}', max_len=5)"
        f"|keep('labels')"
    )
    tensor_slices = {
        inkey: tf.ragged.constant([["one more"], ["more than one"], [""]])
    }
    ds = _create_ds(pp_str, tensor_slices, 3)
    self.assertAllEqual(
        next(iter(ds))["labels"],
        [[5, 4, 2, 0, 0], [5, 2, 3, 4, 0], [5, 0, 0, 0, 0]],
    )


if __name__ == "__main__":
  tf.test.main()