File size: 6,009 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""pp ops."""
import functools
import string
from big_vision.pp import ops_text
from big_vision.pp import utils
from big_vision.pp.registry import Registry
import big_vision.pp.tokenizer as bv_tok
import numpy as np
import tensorflow as tf
@Registry.register('tokenizers.gemma')
def get_tokenizer_gemma(
tokensets=(),
model='gs://big_vision/gemma_tokenizer.model',
):
# See (internal link) for colab playground.
return ops_text.SentencepieceTokenizer(model=model, tokensets=tokensets)
@functools.cache
def tokenize_constant(model, text, bos='no', eos='no', length=None):
"""Tokenize a constant string, with memoization."""
assert eos in ('no', 'yes', 'sticky')
assert bos in ('no', 'yes')
tokenizer = bv_tok.get_tokenizer(model)
tokens = tokenizer.to_int(
text, bos=bos == 'yes', eos=eos in ('yes', 'sticky'))
if length is None:
return tokens
if len(tokens) > length:
if eos == 'sticky':
return np.r_[tokens[:length-1], tokens[-1]]
else:
return tokens[:length]
else:
return np.pad(tokens, [(0, length - len(tokens))],
constant_values=tokenizer.pad_token)
@Registry.register('preprocess_ops.tolen')
@utils.InKeyOutKey(indefault=None, outdefault=None, with_data=True)
def get_tolen(length, *, sticky_end=False, pad_value=None, pad_key=None):
"""Gets token to a fixed length."""
def _tolen(x, data):
if not length:
return x
xlen = tf.shape(x)[0]
if sticky_end:
trunc_fn = lambda: tf.concat([x[:length - 1], x[-1:]], axis=0)
else:
trunc_fn = lambda: x[:length]
# Potentially get the pad value from a data key (to be tokenizer agnostic).
pad_value_ = pad_value
if pad_key:
pad_value_ = data[pad_key]
# If coming from a previous tokenization op, it's probably 1D; take first.
if getattr(pad_value_, 'ndim', 0) == 1:
pad_value_ = pad_value_[0]
assert pad_value_ is not None, 'Need either pad_value or pad_key.'
pad_fn = lambda: tf.pad(x, [(0, length - xlen)], constant_values=pad_value_)
out = tf.cond(xlen >= length, trunc_fn, pad_fn)
out.set_shape([length])
return out
return _tolen
@Registry.register('preprocess_ops.tok')
def get_tokenize(model, length=None, *, bos='no', eos='no',
text=None, key=None, inkey=None, outkey=None):
"""Tokenizes and optionally truncates/pads a string."""
assert eos in ('no', 'yes', 'sticky')
assert bos in ('no', 'yes')
outkey_ = outkey or key
inkey_ = inkey or key
if text is not None:
assert inkey is None, 'Either inkey or text, not both.'
tokens = tokenize_constant(model, text, bos=bos, eos=eos, length=length)
def _pp_tokenize_text(data):
data[outkey_] = tokens
return data
return _pp_tokenize_text
tokenizer = bv_tok.get_tokenizer(model)
def _pp_tokenize(data):
assert getattr(data[inkey_], 'ndim', 0) == 0, (
f'Can only tokenize single string ({inkey_}, {data[inkey_].ndim}-D)')
toks = tokenizer.to_int_tf_op(
data[inkey_], bos=bos == 'yes', eos=eos in ('yes', 'sticky'))
tolen = get_tolen(
length, sticky_end=eos == 'sticky',
pad_value=bv_tok.get_tokenizer(model).pad_token,
key='tmp',
)
toks = tolen({'tmp': toks})['tmp']
data[outkey_] = toks
return data
return _pp_tokenize
@Registry.register('preprocess_ops.masked_concat')
def get_masked_concat(keys, outkey='text', **masks):
assert all(len(keys) == len(m) for m in masks.values()), (keys, masks)
def _masked_concat(data):
data[outkey] = tf.concat([data[k] for k in keys], axis=0)
for mask_name, mask_vals in masks.items():
m = [tf.fill(tf.shape(data[k]), v) for k, v in zip(keys, mask_vals)]
data[mask_name] = tf.concat(m, axis=0)
return data
return _masked_concat
@Registry.register('preprocess_ops.strfmt')
def get_strfmt(template, outkey='text'):
"""Formats a string template with content form the data dict."""
def _template(data):
outputs = []
parts = string.Formatter().parse(template)
for (literal_text, field_name, format_spec, conversion) in parts:
# For now, we keep it simple and don't support fancy format specs.
# But we can add support to that via py_func as soon as we need it.
assert not format_spec and not conversion
outputs.append(tf.constant(literal_text))
if field_name:
value = data[field_name]
# Convert any non-strings (numbers, vectors) to a string.
if tf.convert_to_tensor(value).dtype != tf.string:
value = tf.strings.format('{}', value, summarize=-1)
outputs.append(value)
data[outkey] = tf.strings.join(outputs)
return data
return _template
@Registry.register('preprocess_ops.strjoin')
@utils.InKeyOutKey()
def get_strjoin(glue):
def _strjoin(x):
return tf.strings.reduce_join(x, separator=glue)
return _strjoin
@Registry.register('preprocess_ops.majority')
@utils.InKeyOutKey()
def get_majority():
def _majority(x):
val, _, count = tf.unique_with_counts(x) # Sadly, stablesorted.
return val[tf.argmax(count)]
return _majority
@Registry.register('preprocess_ops.getidx')
def getidx(inkey, index_key, outkey=None):
"""Indexes a tensor and stores result in outkey."""
def _getidx(data):
idx = data[index_key]
array = data[inkey]
data[outkey or inkey] = array[idx]
return data
return _getidx
|