File size: 6,009 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""pp ops."""

import functools
import string

from big_vision.pp import ops_text
from big_vision.pp import utils
from big_vision.pp.registry import Registry
import big_vision.pp.tokenizer as bv_tok
import numpy as np
import tensorflow as tf


@Registry.register('tokenizers.gemma')
def get_tokenizer_gemma(
    tokensets=(),
    model='gs://big_vision/gemma_tokenizer.model',
):
  # See (internal link) for colab playground.
  return ops_text.SentencepieceTokenizer(model=model, tokensets=tokensets)


@functools.cache
def tokenize_constant(model, text, bos='no', eos='no', length=None):
  """Tokenize a constant string, with memoization."""
  assert eos in ('no', 'yes', 'sticky')
  assert bos in ('no', 'yes')
  tokenizer = bv_tok.get_tokenizer(model)
  tokens = tokenizer.to_int(
      text, bos=bos == 'yes', eos=eos in ('yes', 'sticky'))

  if length is None:
    return tokens

  if len(tokens) > length:
    if eos == 'sticky':
      return np.r_[tokens[:length-1], tokens[-1]]
    else:
      return tokens[:length]
  else:
    return np.pad(tokens, [(0, length - len(tokens))],
                  constant_values=tokenizer.pad_token)


@Registry.register('preprocess_ops.tolen')
@utils.InKeyOutKey(indefault=None, outdefault=None, with_data=True)
def get_tolen(length, *, sticky_end=False, pad_value=None, pad_key=None):
  """Gets token to a fixed length."""
  def _tolen(x, data):
    if not length:
      return x

    xlen = tf.shape(x)[0]

    if sticky_end:
      trunc_fn = lambda: tf.concat([x[:length - 1], x[-1:]], axis=0)
    else:
      trunc_fn = lambda: x[:length]

    # Potentially get the pad value from a data key (to be tokenizer agnostic).
    pad_value_ = pad_value
    if pad_key:
      pad_value_ = data[pad_key]
      # If coming from a previous tokenization op, it's probably 1D; take first.
      if getattr(pad_value_, 'ndim', 0) == 1:
        pad_value_ = pad_value_[0]
    assert pad_value_ is not None, 'Need either pad_value or pad_key.'

    pad_fn = lambda: tf.pad(x, [(0, length - xlen)], constant_values=pad_value_)
    out = tf.cond(xlen >= length, trunc_fn, pad_fn)
    out.set_shape([length])
    return out
  return _tolen


@Registry.register('preprocess_ops.tok')
def get_tokenize(model, length=None, *, bos='no', eos='no',
                 text=None, key=None, inkey=None, outkey=None):
  """Tokenizes and optionally truncates/pads a string."""

  assert eos in ('no', 'yes', 'sticky')
  assert bos in ('no', 'yes')
  outkey_ = outkey or key
  inkey_ = inkey or key

  if text is not None:
    assert inkey is None, 'Either inkey or text, not both.'
    tokens = tokenize_constant(model, text, bos=bos, eos=eos, length=length)
    def _pp_tokenize_text(data):
      data[outkey_] = tokens
      return data
    return _pp_tokenize_text

  tokenizer = bv_tok.get_tokenizer(model)

  def _pp_tokenize(data):
    assert getattr(data[inkey_], 'ndim', 0) == 0, (
        f'Can only tokenize single string ({inkey_}, {data[inkey_].ndim}-D)')

    toks = tokenizer.to_int_tf_op(
        data[inkey_], bos=bos == 'yes', eos=eos in ('yes', 'sticky'))

    tolen = get_tolen(
        length, sticky_end=eos == 'sticky',
        pad_value=bv_tok.get_tokenizer(model).pad_token,
        key='tmp',
    )
    toks = tolen({'tmp': toks})['tmp']

    data[outkey_] = toks
    return data
  return _pp_tokenize


@Registry.register('preprocess_ops.masked_concat')
def get_masked_concat(keys, outkey='text', **masks):
  assert all(len(keys) == len(m) for m in masks.values()), (keys, masks)
  def _masked_concat(data):
    data[outkey] = tf.concat([data[k] for k in keys], axis=0)
    for mask_name, mask_vals in masks.items():
      m = [tf.fill(tf.shape(data[k]), v) for k, v in zip(keys, mask_vals)]
      data[mask_name] = tf.concat(m, axis=0)
    return data
  return _masked_concat


@Registry.register('preprocess_ops.strfmt')
def get_strfmt(template, outkey='text'):
  """Formats a string template with content form the data dict."""

  def _template(data):
    outputs = []
    parts = string.Formatter().parse(template)
    for (literal_text, field_name, format_spec, conversion) in parts:
      # For now, we keep it simple and don't support fancy format specs.
      # But we can add support to that via py_func as soon as we need it.
      assert not format_spec and not conversion
      outputs.append(tf.constant(literal_text))
      if field_name:
        value = data[field_name]
        # Convert any non-strings (numbers, vectors) to a string.
        if tf.convert_to_tensor(value).dtype != tf.string:
          value = tf.strings.format('{}', value, summarize=-1)
        outputs.append(value)
    data[outkey] = tf.strings.join(outputs)
    return data

  return _template


@Registry.register('preprocess_ops.strjoin')
@utils.InKeyOutKey()
def get_strjoin(glue):
  def _strjoin(x):
    return tf.strings.reduce_join(x, separator=glue)
  return _strjoin


@Registry.register('preprocess_ops.majority')
@utils.InKeyOutKey()
def get_majority():
  def _majority(x):
    val, _, count = tf.unique_with_counts(x)  # Sadly, stablesorted.
    return val[tf.argmax(count)]
  return _majority


@Registry.register('preprocess_ops.getidx')
def getidx(inkey, index_key, outkey=None):
  """Indexes a tensor and stores result in outkey."""
  def _getidx(data):
    idx = data[index_key]
    array = data[inkey]
    data[outkey or inkey] = array[idx]
    return data
  return _getidx