File size: 4,782 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Segmentation-related ops."""

import functools

from big_vision.pp import registry
import numpy as np
import tensorflow as tf

from tensorflow.io import gfile


_KNOWN_MODELS = {
    'oi': 'gs://big_vision/paligemma/vae-oid.npz',
}


@functools.cache
def get_checkpoint(model):
  with gfile.GFile(_KNOWN_MODELS.get(model, model), 'rb') as f:
    return dict(np.load(f))


@registry.Registry.register('preprocess_ops.refcoco_mask2str')
def get_refcoco_mask2str(model='oi'):
  """Returns op for tokenizing a mask."""

  seg_tokens = tf.constant(['<seg%03d>' % i for i in range(128)])
  loc_tokens = tf.constant(['<loc%04d>' % i for i in range(1024)])
  checkpoint = get_checkpoint(model)

  def refcoco_mask2str(data):

    mask = data['objects/mask']
    tf.ensure_shape(mask, [None, None, 3])  # requires choice()
    sentence = data['objects/refs/sentence']
    tf.ensure_shape(sentence, [])  # requires choice()
    bbox = data['objects/bbox']
    tf.ensure_shape(bbox, [4])  # requires choice()

    h = tf.cast(tf.shape(mask)[0], tf.float32)
    w = tf.cast(tf.shape(mask)[1], tf.float32)
    y1 = tf.cast(tf.round(h * bbox[0]), tf.int32)
    x1 = tf.cast(tf.round(w * bbox[1]), tf.int32)
    y2 = tf.cast(tf.round(h * bbox[2]), tf.int32)
    x2 = tf.cast(tf.round(w * bbox[3]), tf.int32)

    assert mask.dtype == tf.uint8, mask.dtype
    mask = tf.image.resize(
        mask[None, y1:y2, x1:x2, :1],
        [64, 64],
        method='bilinear',
        antialias=True,
    ) / 255.0

    mask_indices = encode_to_codebook_indices(checkpoint, mask)[0]
    mask_string = tf.strings.reduce_join(tf.gather(seg_tokens, mask_indices))

    binned_loc = tf.cast(tf.round(bbox * 1023), tf.int32)
    binned_loc = tf.clip_by_value(binned_loc, 0, 1023)
    loc_string = tf.strings.reduce_join(tf.gather(loc_tokens, binned_loc))

    data['prefix'] = sentence
    data['suffix'] = tf.strings.join([loc_string, mask_string])

    return data

  return refcoco_mask2str


# Based on https://arxiv.org/abs/2301.02229.

NUM_DOWNSAMPLE_LAYERS = 4
NUM_RES_BLOCKS = 2


def encode_to_codebook_indices(checkpoint, masks):
  """Encode a batch of binary segmentation masks into 16 tokens each.

  Based on code from https://arxiv.org/abs/2301.02229

  Args:
    checkpoint: model weights from PyTorch model.
    masks: Must be in range `[0..1]`, and of shape `[None, 64, 64, 1]`.

  Returns:
    A tensor of shape `[None, 16]` with elements in `range(128)`.
  """

  # We require that the input masks are already resized to 64x64.
  x = tf.ensure_shape(masks, [None, 64, 64, 1])
  x = _norm(x)

  for n in range(NUM_DOWNSAMPLE_LAYERS):
    x = _conv_tf(
        checkpoint, x, strides=2, padding='SAME', layer_name=f'encoder.{2*n}'
    )
    x = tf.nn.relu(x)

  for n in range(NUM_RES_BLOCKS):
    x = _resblock_tf(checkpoint, x, layer_name=f'encoder.{8+n}.net')

  x = _conv_tf(
      checkpoint, x, strides=1, padding='SAME', layer_name='encoder.10'
  )

  return _get_codebook_indices(checkpoint, x)


def _norm(x):
  return 2.0 * (x - 0.5)


def _conv_tf(checkpoint, x, strides, padding, layer_name):
  kernel = checkpoint[layer_name + '.weight']
  kernel = np.transpose(kernel, (2, 3, 1, 0))
  bias = checkpoint[layer_name + '.bias']
  return tf.nn.conv2d(x, kernel, strides=strides, padding=padding) + bias


def _resblock_tf(checkpoint, x, layer_name):
  """Apply a residual block of the mask encoder."""
  original_x = x
  x = _conv_tf(
      checkpoint, x, padding='SAME', strides=1, layer_name=layer_name + '.0'
  )
  x = tf.nn.relu(x)
  x = _conv_tf(
      checkpoint, x, padding='SAME', strides=1, layer_name=layer_name + '.2'
  )
  x = tf.nn.relu(x)
  x = _conv_tf(
      checkpoint, x, padding='SAME', strides=1, layer_name=layer_name + '.4'
  )
  return x + original_x


def _get_codebook_indices(checkpoint, encoder_output):
  embeddings = checkpoint['_vq_vae._embedding']
  flat_input = tf.reshape(encoder_output, [-1, embeddings.shape[1]])
  distances = (
      tf.reduce_sum(flat_input**2, axis=1, keepdims=True)
      + tf.reduce_sum(embeddings**2, axis=1)
      - 2 * tf.matmul(flat_input, embeddings.T)
  )
  indices = tf.argmin(distances, axis=1)
  return tf.reshape(indices, [-1, 16])