File size: 7,547 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Preprocessing ops."""
from big_vision.pp import utils
from big_vision.pp.registry import Registry
import numpy as np
import tensorflow as tf


@Registry.register("preprocess_ops.rgb_to_grayscale_to_rgb")
@utils.InKeyOutKey(indefault="image", outdefault="image")
def get_rgb_to_grayscale_to_rgb():
  def _rgb_to_grayscale_to_rgb(image):
    return tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image))
  return _rgb_to_grayscale_to_rgb


@Registry.register("preprocess_ops.nyu_eval_crop")
def get_nyu_eval_crop():
  """Crops labels and image to valid eval area."""
  # crop_h = slice(45, 471)
  # crop_w = slice(41, 601)
  crop_h_start = 54
  crop_h_size = 426
  crop_w_start = 41
  crop_w_size = 560

  def _pp(data):
    tf.debugging.assert_equal(tf.shape(data["labels"]), (480, 640, 1))
    tf.debugging.assert_equal(tf.shape(data["image"]), (480, 640, 3))
    data["labels"] = tf.slice(data["labels"],
                              [crop_h_start, crop_w_start, 0],
                              [crop_h_size, crop_w_size, -1])
    data["image"] = tf.slice(data["image"],
                             [crop_h_start, crop_w_start, 0],
                             [crop_h_size, crop_w_size, -1])
    return data
  return _pp


@Registry.register("preprocess_ops.nyu_depth")
@utils.InKeyOutKey(indefault="depth", outdefault="labels")
def get_nyu_depth():
  """Preprocesses NYU depth data."""
  def _pp(depth):
    return tf.expand_dims(tf.cast(depth, tf.float32), -1)
  return _pp


@Registry.register("preprocess_ops.coco_panoptic")
def get_coco_panoptic_pp():
  """COCO-panoptic: produces a mask with labels and a mask with instance ids.

  Instance channel will have values between 1 and N, and -1 for non-annotated
  pixels.

  Returns:
    COCO panoptic preprocessign op.
  """
  def _coco_panoptic(data):
    instance_ids = tf.cast(data["panoptic_objects"]["id"], tf.int32)
    instance_labels = tf.cast(data["panoptic_objects"]["label"], tf.int32)

    # Convert image with ids split in 3 channels into a an integer id.
    id_mask = tf.einsum(
        "hwc,c->hw",
        tf.cast(data["panoptic_image"], tf.int32),
        tf.constant([1, 256, 256**2], tf.int32))

    # Broadcast into N boolean masks one per instance_id.
    n_masks = tf.cast(
        id_mask[:, :, None] == instance_ids[None, None, :], tf.int32)

    # Merge into a semantic and an instance id mask.
    # Note: pixels which do not belong to any mask, will have value=-1
    # which creates an empty one_hot masks.
    # Number instances starting at 1 (0 is treated specially by make_canonical).
    instance_idx = tf.range(tf.shape(instance_ids)[-1])
    instances = tf.einsum("hwc,c->hw", n_masks, instance_idx + 1)
    semantics = tf.einsum("hwc,c->hw", n_masks, instance_labels + 1)

    data["instances"] = instances[:, :, None]
    data["semantics"] = semantics[:, :, None]
    return data

  return _coco_panoptic


@Registry.register("preprocess_ops.make_canonical")
@utils.InKeyOutKey(indefault="labels", outdefault="labels")
def get_make_canonical(random=False, main_sort_axis="y"):
  """Makes id mask ordered from left to right based on the center of mass."""
  # By convention, instances are in the last channel.
  def _make_canonical(image):
    """Op."""
    instimg = image[..., -1]

    # Compute binary instance masks. Note, we do not touch 0 and neg. ids.
    ids = tf.unique(tf.reshape(instimg, [-1])).y
    ids = ids[ids > 0]
    n_masks = tf.cast(
        instimg[None, :, :] == ids[:, None, None], tf.int32)

    if not random:
      f = lambda x: tf.reduce_mean(tf.cast(tf.where(x), tf.float32), axis=0)
      centers = tf.map_fn(f, tf.cast(n_masks, tf.int64), dtype=tf.float32)
      centers = tf.reshape(centers, (tf.shape(centers)[0], 2))
      major = {"y": 0, "x": 1}[main_sort_axis]
      perm = tf.argsort(
          centers[:, 1 - major] +
          tf.cast(tf.shape(instimg)[major], tf.float32) * centers[:, major])
      n_masks = tf.gather(n_masks, perm)
    else:
      n_masks = tf.random.shuffle(n_masks)

    idx = tf.range(tf.shape(ids)[0])
    can_mask = tf.einsum("chw,c->hw", n_masks, idx + 2) - 1
    # Now, all 0 and neg. ids have collapsed to -1. Thus, we recover 0 id from
    # the original mask.
    can_mask = tf.where(instimg == 0, 0, can_mask)
    return tf.concat([image[..., :-1], can_mask[..., None]], axis=-1)

  return _make_canonical


@Registry.register("preprocess_ops.inception_box")
def get_inception_box(
    *, area=(0.05, 1.0), aspect=(0.75, 1.33), min_obj_cover=0.0,
    outkey="box", inkey="image"):
  """Creates an inception style bounding box which can be used to crop."""
  def _inception_box(data):
    _, _, box = tf.image.sample_distorted_bounding_box(
        tf.shape(data[inkey]),
        area_range=area,
        aspect_ratio_range=aspect,
        min_object_covered=min_obj_cover,
        bounding_boxes=(data["objects"]["bbox"][None, :, :]
                        if min_obj_cover else tf.zeros([0, 0, 4])),
        use_image_if_no_bounding_boxes=True)
    # bbox is [[[y0,x0,y1,x1]]]
    data[outkey] = (box[0, 0, :2], box[0, 0, 2:] - box[0, 0, :2])
    return data
  return _inception_box


@Registry.register("preprocess_ops.crop_box")
@utils.InKeyOutKey(with_data=True)
def get_crop_box(*, boxkey="box"):
  """Crops an image according to bounding box in `boxkey`."""
  def _crop_box(image, data):
    shape = tf.shape(image)[:-1]
    begin, size = data[boxkey]
    begin = tf.cast(begin * tf.cast(shape, tf.float32), tf.int32)
    size = tf.cast(size * tf.cast(shape, tf.float32), tf.int32)
    begin = tf.concat([begin, tf.constant((0,))], axis=0)
    size = tf.concat([size, tf.constant((-1,))], axis=0)
    crop = tf.slice(image, begin, size)
    # Unfortunately, the above operation loses the depth-dimension. So we need
    # to restore it the manual way.
    crop.set_shape([None, None, image.shape[-1]])
    return crop
  return _crop_box


@Registry.register("preprocess_ops.randu")
def get_randu(key):
  """Creates a random uniform float [0, 1) in `key`."""
  def _randu(data):
    data[key] = tf.random.uniform([])
    return data
  return _randu


@Registry.register("preprocess_ops.det_fliplr")
@utils.InKeyOutKey(with_data=True)
def get_det_fliplr(*, randkey="fliplr"):
  """Flips an image horizontally based on `randkey`."""
  # NOTE: we could unify this with regular flip when randkey=None.
  def _det_fliplr(orig_image, data):
    flip_image = tf.image.flip_left_right(orig_image)
    flip = tf.cast(data[randkey] > 0.5, orig_image.dtype)
    return flip_image * flip + orig_image * (1 - flip)
  return _det_fliplr


@Registry.register("preprocess_ops.strong_hash")
@utils.InKeyOutKey(indefault="tfds_id", outdefault="tfds_id")
def get_strong_hash():
  """Preprocessing that hashes a string."""
  def _strong_hash(string):
    return tf.strings.to_hash_bucket_strong(
        string,
        np.iinfo(int).max, [3714561454027272724, 8800639020734831960])
  return _strong_hash