File size: 7,547 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Preprocessing ops."""
from big_vision.pp import utils
from big_vision.pp.registry import Registry
import numpy as np
import tensorflow as tf
@Registry.register("preprocess_ops.rgb_to_grayscale_to_rgb")
@utils.InKeyOutKey(indefault="image", outdefault="image")
def get_rgb_to_grayscale_to_rgb():
def _rgb_to_grayscale_to_rgb(image):
return tf.image.grayscale_to_rgb(tf.image.rgb_to_grayscale(image))
return _rgb_to_grayscale_to_rgb
@Registry.register("preprocess_ops.nyu_eval_crop")
def get_nyu_eval_crop():
"""Crops labels and image to valid eval area."""
# crop_h = slice(45, 471)
# crop_w = slice(41, 601)
crop_h_start = 54
crop_h_size = 426
crop_w_start = 41
crop_w_size = 560
def _pp(data):
tf.debugging.assert_equal(tf.shape(data["labels"]), (480, 640, 1))
tf.debugging.assert_equal(tf.shape(data["image"]), (480, 640, 3))
data["labels"] = tf.slice(data["labels"],
[crop_h_start, crop_w_start, 0],
[crop_h_size, crop_w_size, -1])
data["image"] = tf.slice(data["image"],
[crop_h_start, crop_w_start, 0],
[crop_h_size, crop_w_size, -1])
return data
return _pp
@Registry.register("preprocess_ops.nyu_depth")
@utils.InKeyOutKey(indefault="depth", outdefault="labels")
def get_nyu_depth():
"""Preprocesses NYU depth data."""
def _pp(depth):
return tf.expand_dims(tf.cast(depth, tf.float32), -1)
return _pp
@Registry.register("preprocess_ops.coco_panoptic")
def get_coco_panoptic_pp():
"""COCO-panoptic: produces a mask with labels and a mask with instance ids.
Instance channel will have values between 1 and N, and -1 for non-annotated
pixels.
Returns:
COCO panoptic preprocessign op.
"""
def _coco_panoptic(data):
instance_ids = tf.cast(data["panoptic_objects"]["id"], tf.int32)
instance_labels = tf.cast(data["panoptic_objects"]["label"], tf.int32)
# Convert image with ids split in 3 channels into a an integer id.
id_mask = tf.einsum(
"hwc,c->hw",
tf.cast(data["panoptic_image"], tf.int32),
tf.constant([1, 256, 256**2], tf.int32))
# Broadcast into N boolean masks one per instance_id.
n_masks = tf.cast(
id_mask[:, :, None] == instance_ids[None, None, :], tf.int32)
# Merge into a semantic and an instance id mask.
# Note: pixels which do not belong to any mask, will have value=-1
# which creates an empty one_hot masks.
# Number instances starting at 1 (0 is treated specially by make_canonical).
instance_idx = tf.range(tf.shape(instance_ids)[-1])
instances = tf.einsum("hwc,c->hw", n_masks, instance_idx + 1)
semantics = tf.einsum("hwc,c->hw", n_masks, instance_labels + 1)
data["instances"] = instances[:, :, None]
data["semantics"] = semantics[:, :, None]
return data
return _coco_panoptic
@Registry.register("preprocess_ops.make_canonical")
@utils.InKeyOutKey(indefault="labels", outdefault="labels")
def get_make_canonical(random=False, main_sort_axis="y"):
"""Makes id mask ordered from left to right based on the center of mass."""
# By convention, instances are in the last channel.
def _make_canonical(image):
"""Op."""
instimg = image[..., -1]
# Compute binary instance masks. Note, we do not touch 0 and neg. ids.
ids = tf.unique(tf.reshape(instimg, [-1])).y
ids = ids[ids > 0]
n_masks = tf.cast(
instimg[None, :, :] == ids[:, None, None], tf.int32)
if not random:
f = lambda x: tf.reduce_mean(tf.cast(tf.where(x), tf.float32), axis=0)
centers = tf.map_fn(f, tf.cast(n_masks, tf.int64), dtype=tf.float32)
centers = tf.reshape(centers, (tf.shape(centers)[0], 2))
major = {"y": 0, "x": 1}[main_sort_axis]
perm = tf.argsort(
centers[:, 1 - major] +
tf.cast(tf.shape(instimg)[major], tf.float32) * centers[:, major])
n_masks = tf.gather(n_masks, perm)
else:
n_masks = tf.random.shuffle(n_masks)
idx = tf.range(tf.shape(ids)[0])
can_mask = tf.einsum("chw,c->hw", n_masks, idx + 2) - 1
# Now, all 0 and neg. ids have collapsed to -1. Thus, we recover 0 id from
# the original mask.
can_mask = tf.where(instimg == 0, 0, can_mask)
return tf.concat([image[..., :-1], can_mask[..., None]], axis=-1)
return _make_canonical
@Registry.register("preprocess_ops.inception_box")
def get_inception_box(
*, area=(0.05, 1.0), aspect=(0.75, 1.33), min_obj_cover=0.0,
outkey="box", inkey="image"):
"""Creates an inception style bounding box which can be used to crop."""
def _inception_box(data):
_, _, box = tf.image.sample_distorted_bounding_box(
tf.shape(data[inkey]),
area_range=area,
aspect_ratio_range=aspect,
min_object_covered=min_obj_cover,
bounding_boxes=(data["objects"]["bbox"][None, :, :]
if min_obj_cover else tf.zeros([0, 0, 4])),
use_image_if_no_bounding_boxes=True)
# bbox is [[[y0,x0,y1,x1]]]
data[outkey] = (box[0, 0, :2], box[0, 0, 2:] - box[0, 0, :2])
return data
return _inception_box
@Registry.register("preprocess_ops.crop_box")
@utils.InKeyOutKey(with_data=True)
def get_crop_box(*, boxkey="box"):
"""Crops an image according to bounding box in `boxkey`."""
def _crop_box(image, data):
shape = tf.shape(image)[:-1]
begin, size = data[boxkey]
begin = tf.cast(begin * tf.cast(shape, tf.float32), tf.int32)
size = tf.cast(size * tf.cast(shape, tf.float32), tf.int32)
begin = tf.concat([begin, tf.constant((0,))], axis=0)
size = tf.concat([size, tf.constant((-1,))], axis=0)
crop = tf.slice(image, begin, size)
# Unfortunately, the above operation loses the depth-dimension. So we need
# to restore it the manual way.
crop.set_shape([None, None, image.shape[-1]])
return crop
return _crop_box
@Registry.register("preprocess_ops.randu")
def get_randu(key):
"""Creates a random uniform float [0, 1) in `key`."""
def _randu(data):
data[key] = tf.random.uniform([])
return data
return _randu
@Registry.register("preprocess_ops.det_fliplr")
@utils.InKeyOutKey(with_data=True)
def get_det_fliplr(*, randkey="fliplr"):
"""Flips an image horizontally based on `randkey`."""
# NOTE: we could unify this with regular flip when randkey=None.
def _det_fliplr(orig_image, data):
flip_image = tf.image.flip_left_right(orig_image)
flip = tf.cast(data[randkey] > 0.5, orig_image.dtype)
return flip_image * flip + orig_image * (1 - flip)
return _det_fliplr
@Registry.register("preprocess_ops.strong_hash")
@utils.InKeyOutKey(indefault="tfds_id", outdefault="tfds_id")
def get_strong_hash():
"""Preprocessing that hashes a string."""
def _strong_hash(string):
return tf.strings.to_hash_bucket_strong(
string,
np.iinfo(int).max, [3714561454027272724, 8800639020734831960])
return _strong_hash
|