File size: 5,347 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script that loads a model and only runs evaluators."""
from functools import partial
import importlib
import os
from absl import app
from absl import flags
from absl import logging
import big_vision.evaluators.common as eval_common
import big_vision.utils as u
from clu import parameter_overview
import flax
import flax.jax_utils as flax_utils
import jax
import jax.numpy as jnp
from ml_collections import config_flags
from tensorflow.io import gfile
config_flags.DEFINE_config_file(
"config", None, "Training configuration.", lock_config=True)
flags.DEFINE_string("workdir", default=None, help="Work unit directory.")
flags.DEFINE_boolean("cleanup", default=False,
help="Delete workdir (only) after successful completion.")
# Adds jax flags to the program.
jax.config.parse_flags_with_absl()
def main(argv):
del argv
config = flags.FLAGS.config
workdir = flags.FLAGS.workdir
logging.info("Workdir: %s", workdir)
# Here we register preprocessing ops from modules listed on `pp_modules`.
for m in config.get("pp_modules", ["ops_general", "ops_image"]):
importlib.import_module(f"big_vision.pp.{m}")
# These functions do more stuff internally, for OSS release we mock them by
# trivial alternatives in order to minize disruptions in the code.
xid, wid = -1, -1
def write_note(note):
if jax.process_index() == 0:
logging.info("NOTE: %s", note)
mw = u.BigVisionMetricWriter(xid, wid, workdir, config)
u.chrono.inform(measure=mw.measure, write_note=write_note)
write_note(f"Initializing {config.model_name} model...")
assert config.get("model.reinit") is None, (
"I don't think you want any part of the model to be re-initialized.")
model_mod = importlib.import_module(f"big_vision.models.{config.model_name}")
model_kw = dict(config.get("model", {}))
if "num_classes" in config: # Make it work for regular + image_text.
model_kw["num_classes"] = config.num_classes
model = model_mod.Model(**model_kw)
# We want all parameters to be created in host RAM, not on any device, they'll
# be sent there later as needed, otherwise we already encountered two
# situations where we allocate them twice.
@partial(jax.jit, backend="cpu")
def init(rng):
input_shapes = config.get("init_shapes", [(1, 224, 224, 3)])
input_types = config.get("init_types", [jnp.float32] * len(input_shapes))
dummy_inputs = [jnp.zeros(s, t) for s, t in zip(input_shapes, input_types)]
things = flax.core.unfreeze(model.init(rng, *dummy_inputs))
return things.get("params", {})
with u.chrono.log_timing("z/secs/init"):
params_cpu = init(jax.random.PRNGKey(42))
if jax.process_index() == 0:
parameter_overview.log_parameter_overview(params_cpu, msg="init params")
num_params = sum(p.size for p in jax.tree.leaves(params_cpu))
mw.measure("num_params", num_params)
# The use-case for not loading an init is testing and debugging.
if config.get("model_init"):
write_note(f"Initialize model from {config.model_init}...")
params_cpu = model_mod.load(
params_cpu, config.model_init, config.get("model"),
**config.get("model_load", {}))
if jax.process_index() == 0:
parameter_overview.log_parameter_overview(params_cpu, msg="loaded params")
write_note("Replicating...")
params_repl = flax_utils.replicate(params_cpu)
def predict_fn(params, *a, **kw):
return model.apply({"params": params}, *a, **kw)
evaluators = eval_common.from_config(
config, {"predict": predict_fn, "model": model},
lambda s: write_note(f"Initializing evaluator: {s}..."),
lambda key, cfg: 1, # Ignore log_steps, always run.
)
# Allow running for multiple steps can be useful for couple cases:
# 1. non-deterministic evaluators
# 2. warmup when timing evaluators (eg compile cache etc).
for s in range(config.get("eval_repeats", 1)):
mw.step_start(s)
for (name, evaluator, _, prefix) in evaluators:
write_note(f"{name} evaluation step {s}...")
with u.profile(name, noop=name in config.get("no_profile", [])):
with u.chrono.log_timing(f"z/secs/eval/{name}"):
for key, value in evaluator.run(params_repl):
mw.measure(f"{prefix}{key}", value)
u.sync() # sync barrier to get correct measurements
u.chrono.flush_timings()
mw.step_end()
write_note("Done!")
mw.close()
# Make sure all hosts stay up until the end of main.
u.sync()
if workdir and flags.FLAGS.cleanup and jax.process_index() == 0:
gfile.rmtree(workdir)
try: # Only need this on the last work-unit, if already empty.
gfile.remove(os.path.join(workdir, ".."))
except tf.errors.OpError:
pass
if __name__ == "__main__":
app.run(main)
|