File size: 22,619 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Training loop example.

This is a basic variant of a training loop, good starting point for fancy ones.
"""
# pylint: disable=consider-using-from-import
# pylint: disable=logging-fstring-interpolation

import functools
import importlib
import multiprocessing.pool
import os

from absl import app
from absl import flags
from absl import logging
import big_vision.evaluators.common as eval_common
import big_vision.input_pipeline as input_pipeline
import big_vision.optax as bv_optax
import big_vision.sharding as bv_sharding
import big_vision.utils as u
from clu import parameter_overview
import flax.linen as nn
import jax
from jax.experimental import mesh_utils
from jax.experimental import multihost_utils
from jax.experimental.array_serialization import serialization as array_serial
from jax.experimental.shard_map import shard_map
import jax.numpy as jnp
from ml_collections import config_flags
import numpy as np
import optax
import tensorflow as tf

from tensorflow.io import gfile


config_flags.DEFINE_config_file(
    "config", None, "Training configuration.", lock_config=True)

flags.DEFINE_string("workdir", default=None, help="Work unit directory.")
flags.DEFINE_boolean("cleanup", default=False,
                     help="Delete workdir (only) after successful completion.")

# Adds jax flags to the program.
jax.config.parse_flags_with_absl()
# Transfer guard will fail the program whenever that data between a host and
# a device is transferred implicitly. This often catches subtle bugs that
# cause slowdowns and memory fragmentation. Explicit transfers are done
# with jax.device_put and jax.device_get.
jax.config.update("jax_transfer_guard", "disallow")
# Fixes design flaw in jax.random that may cause unnecessary d2d comms.
jax.config.update("jax_threefry_partitionable", True)


NamedSharding = jax.sharding.NamedSharding
P = jax.sharding.PartitionSpec


def main(argv):
  del argv

  # This is needed on multihost systems, but crashes on non-TPU single-host.
  if os.environ.get("BV_JAX_INIT"):
    jax.distributed.initialize()

  # Make sure TF does not touch GPUs.
  tf.config.set_visible_devices([], "GPU")

  config = flags.FLAGS.config

################################################################################
#                                                                              #
#                                Set up logging                                #
#                                                                              #
################################################################################

  # Set up work directory and print welcome message.
  workdir = flags.FLAGS.workdir
  logging.info(
      f"\u001b[33mHello from process {jax.process_index()} holding "
      f"{jax.local_device_count()}/{jax.device_count()} devices and "
      f"writing to workdir {workdir}.\u001b[0m")

  save_ckpt_path = None
  if workdir:  # Always create if requested, even if we may not write into it.
    gfile.makedirs(workdir)
    save_ckpt_path = os.path.join(workdir, "checkpoint.bv")

  # The pool is used to perform misc operations such as logging in async way.
  pool = multiprocessing.pool.ThreadPool()

  # Here we register preprocessing ops from modules listed on `pp_modules`.
  for m in config.get("pp_modules", ["ops_general", "ops_image", "ops_text"]):
    importlib.import_module(f"big_vision.pp.{m}")

  # Setup up logging and experiment manager.
  xid, wid = -1, -1
  fillin = lambda s: s
  def info(s, *a):
    logging.info("\u001b[33mNOTE\u001b[0m: " + s, *a)
  def write_note(note):
    if jax.process_index() == 0:
      info("%s", note)

  mw = u.BigVisionMetricWriter(xid, wid, workdir, config)

  # Allow for things like timings as early as possible!
  u.chrono.inform(measure=mw.measure, write_note=write_note)

################################################################################
#                                                                              #
#                                Set up Mesh                                   #
#                                                                              #
################################################################################

  # We rely on jax mesh_utils to organize devices, such that communication
  # speed is the fastest for the last dimension, second fastest for the
  # penultimate dimension, etc.
  config_mesh = config.get("mesh", [("data", jax.device_count())])

  # Sharding rules with default
  sharding_rules = config.get("sharding_rules", [("act_batch", "data")])

  mesh_axes, mesh_size = tuple(zip(*config_mesh))

  # Because jax.utils do not support `-1` shape size.
  mesh_size = np.array(jax.devices()).reshape(mesh_size).shape

  device_mesh = mesh_utils.create_device_mesh(
      mesh_size, allow_split_physical_axes=config.get(
          "mesh_allow_split_physical_axes", False))

  # Consistent device order is important to ensure correctness of various train
  # loop components, such as input pipeline, update step, evaluators. The
  # order presribed by the `devices_flat` variable should be used throughout
  # the program.
  devices_flat = device_mesh.flatten()

################################################################################
#                                                                              #
#                                Input Pipeline                                #
#                                                                              #
################################################################################

  write_note("Initializing train dataset...")
  batch_size = config.input.batch_size
  if batch_size % jax.device_count() != 0:
    raise ValueError(f"Batch size ({batch_size}) must "
                     f"be divisible by device number ({jax.device_count()})")
  info("Global batch size %d on %d hosts results in %d local batch size. With "
       "%d dev per host (%d dev total), that's a %d per-device batch size.",
       batch_size, jax.process_count(), batch_size // jax.process_count(),
       jax.local_device_count(), jax.device_count(),
       batch_size // jax.device_count())

  train_ds, ntrain_img = input_pipeline.training(config.input)

  total_steps = u.steps("total", config, ntrain_img, batch_size)
  def get_steps(name, default=ValueError, cfg=config):
    return u.steps(name, cfg, ntrain_img, batch_size, total_steps, default)

  u.chrono.inform(total_steps=total_steps, global_bs=batch_size,
                  steps_per_epoch=ntrain_img / batch_size)

  info("Running for %d steps, that means %f epochs",
       total_steps, total_steps * batch_size / ntrain_img)

  # Start input pipeline as early as possible.
  n_prefetch = config.get("prefetch_to_device", 1)
  train_iter = input_pipeline.start_global(train_ds, devices_flat, n_prefetch)

################################################################################
#                                                                              #
#                           Create Model & Optimizer                           #
#                                                                              #
################################################################################

  write_note("Creating model...")
  model_mod = importlib.import_module(f"big_vision.models.{config.model_name}")
  model = model_mod.Model(
      num_classes=config.num_classes, **config.get("model", {}))

  def init(rng):
    batch = jax.tree.map(lambda x: jnp.zeros(x.shape, x.dtype.as_numpy_dtype),
                         train_ds.element_spec)
    params = model.init(rng, batch["image"])["params"]

    # Set bias in the head to a low value, such that loss is small initially.
    if "init_head_bias" in config:
      params["head"]["bias"] = jnp.full_like(params["head"]["bias"],
                                             config["init_head_bias"])

    return params

  # This seed makes the Jax part of things (like model init) deterministic.
  # However, full training still won't be deterministic, for example due to the
  # tf.data pipeline not being deterministic even if we would set TF seed.
  # See (internal link) for a fun read on what it takes.
  rng = jax.random.PRNGKey(u.put_cpu(config.get("seed", 0)))

  write_note("Inferring parameter shapes...")
  rng, rng_init = jax.random.split(rng)
  params_shape = jax.eval_shape(init, rng_init)

  write_note("Inferring optimizer state shapes...")
  tx, sched_fns = bv_optax.make(config, nn.unbox(params_shape), sched_kw=dict(
      total_steps=total_steps, batch_size=batch_size, data_size=ntrain_img))
  opt_shape = jax.eval_shape(tx.init, params_shape)
  # We jit this, such that the arrays are created on the CPU, not device[0].
  sched_fns_cpu = [u.jit_cpu()(sched_fn) for sched_fn in sched_fns]

  if jax.process_index() == 0:
    num_params = sum(np.prod(p.shape) for p in jax.tree.leaves(params_shape))
    mw.measure("num_params", num_params)

################################################################################
#                                                                              #
#                               Shard & Transfer                               #
#                                                                              #
################################################################################

  write_note("Creating device mesh...")
  mesh = jax.sharding.Mesh(device_mesh, mesh_axes)
  repl_sharding = jax.sharding.NamedSharding(mesh, P())

  write_note("Inferring shardings...")
  train_state_shape = {"params": params_shape, "opt": opt_shape}

  strategy = config.get("sharding_strategy", [(".*", "replicate")])
  with nn.logical_axis_rules(sharding_rules):
    train_state_sharding = bv_sharding.infer_sharding(
        train_state_shape, strategy=strategy, mesh=mesh)

  write_note("Transferring train_state to devices...")
  # RNG is always replicated
  rng_init = u.reshard(rng_init, repl_sharding)

  # Parameters and the optimizer are now global (distributed) jax arrays.
  params = jax.jit(init, out_shardings=train_state_sharding["params"])(rng_init)
  opt = jax.jit(tx.init, out_shardings=train_state_sharding["opt"])(params)

  rng, rng_loop = jax.random.split(rng, 2)
  rng_loop = u.reshard(rng_loop, repl_sharding)
  del rng  # not used anymore, so delete it.

  # At this point we have everything we need to form a train state. It contains
  # all the parameters that are passed and updated by the main training step.
  # From here on, we have no need for Flax AxisMetadata (such as partitioning).
  train_state = nn.unbox({"params": params, "opt": opt})
  del params, opt  # Delete to avoid memory leak or accidental reuse.

  write_note("Logging parameter overview...")
  parameter_overview.log_parameter_overview(
      train_state["params"], msg="Init params",
      include_stats="global", jax_logging_process=0)

################################################################################
#                                                                              #
#                                 Update Step                                  #
#                                                                              #
################################################################################

  @functools.partial(
      jax.jit,
      donate_argnums=(0,),
      out_shardings=(train_state_sharding, repl_sharding))
  def update_fn(train_state, rng, batch):
    """Update step."""

    images, labels = batch["image"], batch["labels"]

    step_count = bv_optax.get_count(train_state["opt"], jittable=True)
    rng = jax.random.fold_in(rng, step_count)

    if config.get("mixup") and config.mixup.p:
      # The shard_map below makes mixup run on every device independently and
      # thus avoids unnecessary communication.
      sharded_mixup_fn = shard_map(
          u.get_mixup(rng, config.mixup.p),
          mesh=jax.sharding.Mesh(devices_flat, ("data",)),
          in_specs=P("data"), out_specs=(P(), P("data"), P("data")))
      rng, (images, labels), _ = sharded_mixup_fn(images, labels)

    # Get device-specific loss rng.
    rng, rng_model = jax.random.split(rng, 2)

    def loss_fn(params):
      logits, _ = model.apply(
          {"params": params}, images,
          train=True, rngs={"dropout": rng_model})
      return getattr(u, config.get("loss", "sigmoid_xent"))(
          logits=logits, labels=labels)

    params, opt = train_state["params"], train_state["opt"]
    loss, grads = jax.value_and_grad(loss_fn)(params)
    updates, opt = tx.update(grads, opt, params)
    params = optax.apply_updates(params, updates)

    measurements = {"training_loss": loss}
    gs = jax.tree.leaves(bv_optax.replace_frozen(config.schedule, grads, 0.))
    measurements["l2_grads"] = jnp.sqrt(sum([jnp.sum(g * g) for g in gs]))
    ps = jax.tree.leaves(params)
    measurements["l2_params"] = jnp.sqrt(sum([jnp.sum(p * p) for p in ps]))
    us = jax.tree.leaves(updates)
    measurements["l2_updates"] = jnp.sqrt(sum([jnp.sum(u * u) for u in us]))

    return {"params": params, "opt": opt}, measurements

################################################################################
#                                                                              #
#                               Load Checkpoint                                #
#                                                                              #
################################################################################

  # Decide how to initialize training. The order is important.
  # 1. Always resumes from the existing checkpoint, e.g. resumes a finetune job.
  # 2. Resume from a previous checkpoint, e.g. start a cooldown training job.
  # 3. Initialize model from something, e,g, start a fine-tuning job.
  # 4. Train from scratch.
  resume_ckpt_path = None
  if save_ckpt_path and gfile.exists(f"{save_ckpt_path}-LAST"):
    resume_ckpt_path = save_ckpt_path
  elif config.get("resume"):
    resume_ckpt_path = fillin(config.resume)

  ckpt_mngr = None
  if save_ckpt_path or resume_ckpt_path:
    ckpt_mngr = array_serial.GlobalAsyncCheckpointManager()

  if resume_ckpt_path:
    write_note(f"Resuming training from checkpoint {resume_ckpt_path}...")
    jax.tree.map(lambda x: x.delete(), train_state)
    del train_state
    shardings = {
        **train_state_sharding,
        "chrono": jax.tree.map(lambda _: repl_sharding,
                               u.chrono.save()),
    }
    loaded = u.load_checkpoint_ts(
        resume_ckpt_path, tree=shardings, shardings=shardings)
    train_state = {key: loaded[key] for key in train_state_sharding.keys()}

    u.chrono.load(jax.device_get(loaded["chrono"]))
    del loaded
  elif config.get("model_init"):
    write_note(f"Initialize model from {config.model_init}...")
    # TODO: when updating the `load` API soon, do pass and request the
    # full `train_state` from it. Examples where useful: VQVAE, BN.
    train_state["params"] = model_mod.load(
        train_state["params"], config.model_init, config.get("model"),
        **config.get("model_load", {}))

    # load has the freedom to return params not correctly sharded. Think of for
    # example ViT resampling position embedings on CPU as numpy arrays.
    train_state["params"] = u.reshard(
        train_state["params"], train_state_sharding["params"])

    parameter_overview.log_parameter_overview(
        train_state["params"], msg="restored params",
        include_stats="global", jax_logging_process=0)


################################################################################
#                                                                              #
#                                 Setup Evals                                  #
#                                                                              #
################################################################################

  # We do not jit/pmap this function, because it is passed to evaluator that
  # does it later. We output as many intermediate tensors as possible for
  # maximal flexibility. Later `jit` will prune out things that are not needed.
  def eval_logits_fn(train_state, batch):
    logits, out = model.apply({"params": train_state["params"]}, batch["image"])
    return logits, out

  def eval_loss_fn(train_state, batch):
    logits, _ = model.apply({"params": train_state["params"]}, batch["image"])
    loss_fn = getattr(u, config.get("loss", "sigmoid_xent"))
    return {
        "loss": loss_fn(logits=logits, labels=batch["labels"], reduction=False)
    }

  eval_fns = {
      "predict": eval_logits_fn,
      "loss": eval_loss_fn,
  }

  # Only initialize evaluators when they are first needed.
  @functools.lru_cache(maxsize=None)
  def evaluators():
    return eval_common.from_config(
        config, eval_fns,
        lambda s: write_note(f"Init evaluator: {s}…\n{u.chrono.note}"),
        lambda key, cfg: get_steps(key, default=None, cfg=cfg),
        devices_flat,
    )

  # At this point we need to know the current step to see whether to run evals.
  write_note("Inferring the first step number...")
  first_step_device = bv_optax.get_count(train_state["opt"], jittable=True)
  first_step = int(jax.device_get(first_step_device))
  u.chrono.inform(first_step=first_step)

  # Note that training can be pre-empted during the final evaluation (i.e.
  # just after the final checkpoint has been written to disc), in which case we
  # want to run the evals.
  if first_step in (total_steps, 0):
    write_note("Running initial or final evals...")
    mw.step_start(first_step)
    for (name, evaluator, _, prefix) in evaluators():
      if config.evals[name].get("skip_first") and first_step != total_steps:
        continue
      write_note(f"{name} evaluation...\n{u.chrono.note}")
      with u.chrono.log_timing(f"z/secs/eval/{name}"):
        with mesh, nn.logical_axis_rules(sharding_rules):
          for key, value in evaluator.run(train_state):
            mw.measure(f"{prefix}{key}", value)

################################################################################
#                                                                              #
#                                  Train Loop                                  #
#                                                                              #
################################################################################

  prof = None  # Keeps track of start/stop of profiler state.

  write_note("Starting training loop, compiling the first step...")
  for step, batch in zip(range(first_step + 1, total_steps + 1), train_iter):
    mw.step_start(step)

    with jax.profiler.StepTraceAnnotation("train_step", step_num=step):
      with u.chrono.log_timing("z/secs/update0", noop=step > first_step + 1):
        with mesh, nn.logical_axis_rules(sharding_rules):
          train_state, measurements = update_fn(train_state, rng_loop, batch)

    # On the first host, let's always profile a handful of early steps.
    if jax.process_index() == 0:
      prof = u.startstop_prof(prof, step, first_step, get_steps("log_training"))

    # Report training progress
    if (u.itstime(step, get_steps("log_training"), total_steps, host=0)
        or u.chrono.warmup and jax.process_index() == 0):
      for i, sched_fn_cpu in enumerate(sched_fns_cpu):
        mw.measure(f"global_schedule{i if i else ''}",
                   sched_fn_cpu(u.put_cpu(step - 1)))
      measurements = jax.device_get(measurements)
      for name, value in measurements.items():
        mw.measure(name, value)
      u.chrono.tick(step)
      if not np.isfinite(measurements["training_loss"]):
        raise RuntimeError(f"The loss became nan or inf somewhere within steps "
                           f"[{step - get_steps('log_training')}, {step}]")

    # Checkpoint saving
    keep_ckpt_steps = get_steps("keep_ckpt", None) or total_steps
    if save_ckpt_path and (
        (keep := u.itstime(step, keep_ckpt_steps, total_steps, first=False))
        or u.itstime(step, get_steps("ckpt", None), total_steps, first=True)
    ):
      u.chrono.pause(wait_for=train_state)

      # Copy because we add extra stuff to the checkpoint.
      ckpt = {**train_state}

      # To save chrono state correctly and safely in a multihost setup, we
      # broadcast the state to all hosts and convert it to a global array.
      with jax.transfer_guard("allow"):
        chrono_ckpt = multihost_utils.broadcast_one_to_all(u.chrono.save())
      chrono_shardings = jax.tree.map(lambda _: repl_sharding, chrono_ckpt)
      ckpt = ckpt | {"chrono": u.reshard(chrono_ckpt, chrono_shardings)}

      u.save_checkpoint_ts(ckpt_mngr, ckpt, save_ckpt_path, step, keep)
      u.chrono.resume()

    for (name, evaluator, log_steps, prefix) in evaluators():
      if u.itstime(step, log_steps, total_steps, first=False, last=True):
        u.chrono.pause(wait_for=train_state)
        u.chrono.tick(step)  # Record things like epoch number, core hours etc.
        write_note(f"{name} evaluation...\n{u.chrono.note}")
        with u.chrono.log_timing(f"z/secs/eval/{name}"):
          with mesh, nn.logical_axis_rules(sharding_rules):
            for key, value in evaluator.run(train_state):
              mw.measure(f"{prefix}{key}", jax.device_get(value))
        u.chrono.resume()
    mw.step_end()

  # Always give a chance to stop the profiler, no matter how things ended.
  # TODO: can we also do this when dying of an exception like OOM?
  if jax.process_index() == 0 and prof is not None:
    u.startstop_prof(prof)

  # Last note needs to happen before the pool's closed =)
  write_note(f"Done!\n{u.chrono.note}")

  pool.close()
  pool.join()
  mw.close()
  if ckpt_mngr:
    ckpt_mngr.wait_until_finished()

  # Make sure all hosts stay up until the end of main.
  u.sync()

  u.maybe_cleanup_workdir(workdir, flags.FLAGS.cleanup, info)


if __name__ == "__main__":
  app.run(main)