File size: 29,624 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Training loop for GIVT-style autoregressive and masked models."""

# pylint: disable=consider-using-from-import
import functools
import importlib
import multiprocessing.pool
import os

from absl import app
from absl import flags
from absl import logging
import big_vision.evaluators.common as eval_common
import big_vision.input_pipeline as input_pipeline
from big_vision.models.proj.givt import parallel_decode
import big_vision.models.proj.givt.decode as softar_decode
import big_vision.optax as bv_optax
import big_vision.sharding as bv_sharding
import big_vision.trainers.proj.givt.utils as trainer_utils
from big_vision.trainers.proj.uvim import panoptic_task
import big_vision.utils as u
from clu import parameter_overview
import flax
import jax
from jax.experimental import mesh_utils
from jax.experimental import multihost_utils
from jax.experimental.array_serialization import serialization as array_serial
import jax.numpy as jnp
from ml_collections import config_flags
import numpy as np
import optax
import tensorflow as tf

from tensorflow.io import gfile

# pylint: disable=logging-fstring-interpolation


config_flags.DEFINE_config_file(
    "config", None, "Training configuration.", lock_config=True)

flags.DEFINE_string("workdir", default=None, help="Work unit directory.")
flags.DEFINE_boolean("cleanup", default=False,
                     help="Delete workdir (only) after successful completion.")

# Adds jax flags to the program.
jax.config.parse_flags_with_absl()
# Transfer guard will fail the program whenever that data between a host and
# a device is transferred implicitly. This often catches subtle bugs that
# cause slowdowns and memory fragmentation. Explicit transfers are done
# with jax.device_put and jax.device_get.
jax.config.update("jax_transfer_guard", "disallow")
# Fixes design flaw in jax.random that may cause unnecessary d2d comms.
jax.config.update("jax_threefry_partitionable", True)


NamedSharding = jax.sharding.NamedSharding
P = jax.sharding.PartitionSpec


def main(argv):
  del argv

  jax.distributed.initialize()

  # Make sure TF does not touch GPUs.
  tf.config.set_visible_devices([], "GPU")

  config = flags.FLAGS.config

################################################################################
#                                                                              #
#                                Set up logging                                #
#                                                                              #
################################################################################

  # Set up work directory and print welcome message.
  workdir = flags.FLAGS.workdir
  logging.info(
      f"\u001b[33mHello from process {jax.process_index()} holding "
      f"{jax.local_device_count()}/{jax.device_count()} devices and "
      f"writing to workdir {workdir}.\u001b[0m")

  save_ckpt_path = None
  if workdir:  # Always create if requested, even if we may not write into it.
    gfile.makedirs(workdir)
    save_ckpt_path = os.path.join(workdir, "checkpoint.bv")

  # The pool is used to perform misc operations such as logging in async way.
  pool = multiprocessing.pool.ThreadPool()

  # Here we register preprocessing ops from modules listed on `pp_modules`.
  for m in config.get("pp_modules", ["ops_general", "ops_image", "ops_text",
                                     "proj.uvim.pp_ops", "proj.givt.pp_ops"]):
    importlib.import_module(f"big_vision.pp.{m}")

  # Setup up logging and experiment manager.
  xid, wid = -1, -1
  def info(s, *a):
    logging.info("\u001b[33mNOTE\u001b[0m: " + s, *a)
  def write_note(note):
    if jax.process_index() == 0:
      info("%s", note)

  mw = u.BigVisionMetricWriter(xid, wid, workdir, config)

  # Allow for things like timings as early as possible!
  u.chrono.inform(measure=mw.measure, write_note=write_note)

################################################################################
#                                                                              #
#                                Set up Mesh                                   #
#                                                                              #
################################################################################

  # We rely on jax mesh_utils to organize devices, such that communication
  # speed is the fastest for the last dimension, second fastest for the
  # penultimate dimension, etc.
  config_mesh = config.get("mesh", [("data", jax.device_count())])

  # Sharding rules with default
  sharding_rules = config.get("sharding_rules", [("act_batch", "data")])

  mesh_axes, mesh_size = tuple(zip(*config_mesh))

  # Because jax.utils do not support `-1` shape size.
  mesh_size = np.array(jax.devices()).reshape(mesh_size).shape

  device_mesh = mesh_utils.create_device_mesh(mesh_size)

  # Consistent device order is important to ensure correctness of various train
  # loop components, such as input pipeline, update step, evaluators. The
  # order presribed by the `devices_flat` variable should be used throughout
  # the program.
  devices_flat = device_mesh.flatten()

################################################################################
#                                                                              #
#                                Input Pipeline                                #
#                                                                              #
################################################################################

  write_note("Initializing train dataset...")
  batch_size = config.input.batch_size
  if batch_size % jax.device_count() != 0:
    raise ValueError(f"Batch size ({batch_size}) must "
                     f"be divisible by device number ({jax.device_count()})")
  info("Global batch size %d on %d hosts results in %d local batch size. With "
       "%d dev per host (%d dev total), that's a %d per-device batch size.",
       batch_size, jax.process_count(), batch_size // jax.process_count(),
       jax.local_device_count(), jax.device_count(),
       batch_size // jax.device_count())

  train_ds, ntrain_img = input_pipeline.training(config.input)

  total_steps = u.steps("total", config, ntrain_img, batch_size)
  def get_steps(name, default=ValueError, cfg=config):
    return u.steps(name, cfg, ntrain_img, batch_size, total_steps, default)

  u.chrono.inform(total_steps=total_steps, global_bs=batch_size,
                  steps_per_epoch=ntrain_img / batch_size)

  info("Running for %d steps, that means %f epochs",
       total_steps, total_steps * batch_size / ntrain_img)

  # Start input pipeline as early as possible.
  n_prefetch = config.get("prefetch_to_device", 1)
  train_iter = input_pipeline.start_global(train_ds, devices_flat, n_prefetch)

################################################################################
#                                                                              #
#                           Create Model & Optimizer                           #
#                                                                              #
################################################################################

  write_note(f"Creating {config.vae.model_name} model...")
  vae_mod = importlib.import_module(
      f"big_vision.models.{config.vae.model_name}")
  vae = vae_mod.Model(**config.vae.get("model", {}))

  write_note(f"Creating {config.model_name} model...")
  model_mod = importlib.import_module(f"big_vision.models.{config.model_name}")
  model_config = config.get("model", {})
  model = model_mod.Model(**model_config)

  if config.get("adaptor_name"):
    write_note(f"Creating {config.adaptor_name} model...")
    adaptor_mod = importlib.import_module(
        f"big_vision.models.{config.adaptor_name}")
    adaptor = adaptor_mod.Model(num_channels=model_config.out_dim,
                                **config.adaptor.model)
  else:
    adaptor = None

  def init(rng):
    def _get_dummy_input(input_name, dtype=jnp.int64):
      if input_name in train_ds.element_spec:
        return jnp.zeros(train_ds.element_spec[input_name].shape, dtype=dtype)
      return None

    dummy_img = _get_dummy_input("image", dtype=jnp.float32)
    dummy_labels = _get_dummy_input("labels")
    dummy_cond_img = _get_dummy_input("cond_image", dtype=jnp.float32)
    local_batch_size = dummy_img.shape[0]  # pytype: disable=attribute-error

    code_shape = (
        local_batch_size, model_config.seq_len, model_config.out_dim)
    dummy_code = jnp.zeros(code_shape, jnp.float32)

    input_mask = model.get_input_mask_training(
        jax.random.PRNGKey(0), (local_batch_size, model_config.seq_len)
    )
    params = model.init(rng, dummy_code, dummy_labels, image=dummy_cond_img,
                        input_mask=input_mask)["params"]

    if adaptor is not None:
      _, rng_adaptor = jax.random.split(rng)
      adaptor_variables = adaptor.init(rng_adaptor, dummy_code)
      params_adaptor = flax.core.unfreeze(adaptor_variables["params"])
      params["params_adaptor"] = params_adaptor       # store in same dict

    return params

  rng = jax.random.PRNGKey(u.put_cpu(config.get("seed", 0)))

  write_note("Inferring parameter shapes...")
  rng, rng_init = jax.random.split(rng)
  params_shape = jax.eval_shape(init, rng_init)

  write_note("Inferring optimizer state shapes...")
  tx, sched_fns = bv_optax.make(config, params_shape, sched_kw=dict(
      total_steps=total_steps, batch_size=batch_size, data_size=ntrain_img))
  opt_shape = jax.eval_shape(tx.init, params_shape)
  # We jit this, such that the arrays are created on the CPU, not device[0].
  sched_fns_cpu = [u.jit_cpu()(sched_fn) for sched_fn in sched_fns]

  # Training a stage 2 model requires a pretrained stage 1 model. We treat this
  # as a constant and do not shard the parameters.
  assert "model_init" in config.vae
  params_vae = vae_mod.load(None, config.vae.model_init,
                            **config.vae.get("model_load", {}))

  def vae_encode(images, rng=None, reparametrize=True):
    mu, logvar = vae.apply({"params": params_vae}, images, method=vae.encode)
    if reparametrize:
      assert rng is not None and "dropout" in rng
      return vae.apply({"params": params_vae}, mu, logvar,
                       method=vae.reparametrize, rngs=rng)
    return mu

  if jax.process_index() == 0:
    num_params = sum(np.prod(p.shape) for p in jax.tree_leaves(params_shape))
    mw.measure("num_params", num_params)

################################################################################
#                                                                              #
#                               Shard & Transfer                               #
#                                                                              #
################################################################################

  write_note("Creating device mesh...")
  mesh = jax.sharding.Mesh(device_mesh, mesh_axes)
  repl_sharding = jax.sharding.NamedSharding(mesh, P())

  write_note("Inferring shardings...")
  train_state_shape = {"params": params_shape, "opt": opt_shape}

  strategy = config.get("sharding_strategy", [(".*", "replicate")])
  train_state_sharding = bv_sharding.infer_sharding(
      train_state_shape, strategy=strategy, mesh=mesh)

  write_note("Transferring train_state to devices...")
  # RNG is always replicated
  rng_init = u.reshard(rng_init, repl_sharding)

  # Parameters and the optimizer are now global (distributed) jax arrays.
  params = jax.jit(init, out_shardings=train_state_sharding["params"])(rng_init)
  opt = jax.jit(tx.init, out_shardings=train_state_sharding["opt"])(params)

  rng, rng_loop = jax.random.split(rng, 2)
  rng_loop = u.reshard(rng_loop, repl_sharding)
  del rng  # not used anymore, so delete it.

  # At this point we have everything we need to form a train state. It contains
  # all the parameters that are passed and updated by the main training step.
  train_state = {"params": params, "opt": opt}
  del params, opt  # Delete to avoid memory leak or accidental reuse.

  write_note("Logging parameter overview...")
  parameter_overview.log_parameter_overview(
      train_state["params"], msg="Init params",
      include_stats="global", jax_logging_process=0)

################################################################################
#                                                                              #
#                                 Update Step                                  #
#                                                                              #
################################################################################

  # Define the loss function
  def loss_fn(params, images, labels, cond_images, rng):
    rng, rng_dropout = jax.random.split(rng, 2)
    rng, rng_mask = jax.random.split(rng, 2)
    _, rng_droplabels = jax.random.split(rng, 2)

    rng_dropout = {"dropout": rng_dropout}

    sequence = vae_encode(images, rng_dropout)
    if adaptor is not None:
      # Use the (invertible) adaptor to map to a new latent sequence
      sequence = adaptor.apply({"params": params["params_adaptor"]},
                               sequence, method=adaptor.forward)

    b, s, _ = sequence.shape
    # This is None for the non-mask style. Otherwise, shape (b, s).
    input_mask = model.get_input_mask_training(rng_mask, (b, s))
    drop_labels = model.get_drop_labels(rng_droplabels, batch_size=b)

    _, pdf = model.apply(
        {"params": params}, sequence, labels,
        image=cond_images,
        train=True,
        input_mask=input_mask,
        drop_labels=drop_labels,
        rngs=rng_dropout)

    # Shape: (B, L, out_dim)
    nll = -pdf.log_prob(sequence)
    metrics = {"nll": nll}
    if input_mask is not None:
      metrics["fraction_masked_out"] = input_mask.astype(jnp.float32).mean(
          axis=1
      )
      if nll.ndim == 3:
        input_mask = input_mask[:, :, None]
      # Note that `input_mask` is True where we mask out the input (ie replace
      # with mask token), so we also only gather nlls at the corresponding
      # points.
      nll = jnp.where(input_mask, nll, 0.0)
      # Take mean only of the spots we care about to smooth loss magnitute
      # between examples, like in maskgit (ie this is
      # sum(loss * input_mask) / sum(input_mask) in their code.
      loss = nll.mean(where=input_mask)
    else:
      loss = nll.mean()

    return loss, metrics

  @functools.partial(
      jax.jit,
      donate_argnums=(0,),
      out_shardings=(train_state_sharding, repl_sharding))
  def update_fn(train_state, rng, batch):
    """Update step."""

    images = batch["image"]
    labels, cond_images = batch.get("labels"), batch.get("cond_image")

    step_count = bv_optax.get_count(train_state["opt"], jittable=True)
    rng = jax.random.fold_in(rng, step_count)

    measurements = {}

    # Get device-specific loss rng.
    _, rng_model = jax.random.split(rng, 2)
    params, opt = train_state["params"], train_state["opt"]

    (loss, metrics), grads = jax.value_and_grad(loss_fn, has_aux=True)(
        params, images, labels, cond_images, rng_model)
    updates, opt = tx.update(grads, opt, params)
    params = optax.apply_updates(params, updates)
    train_state = {"params": params, "opt": opt}

    measurements["training_loss"] = loss
    gs = jax.tree_leaves(bv_optax.replace_frozen(config.schedule, grads, 0.))
    measurements["l2_grads"] = jnp.sqrt(sum([jnp.vdot(g, g) for g in gs]))
    ps = jax.tree_leaves(params)
    measurements["l2_params"] = jnp.sqrt(sum([jnp.vdot(p, p) for p in ps]))
    us = jax.tree_leaves(updates)
    measurements["l2_updates"] = jnp.sqrt(sum([jnp.vdot(u, u) for u in us]))

    if adaptor is not None:
      ps_a = jax.tree_leaves(params["params_adaptor"])
      measurements["l2_params_adaptor"] = jnp.sqrt(sum([jnp.vdot(p, p)
                                                        for p in ps_a]))

    measurements.update({f"train/{k}": v.mean() for k, v in metrics.items()})

    return train_state, measurements

################################################################################
#                                                                              #
#                                 Set up Evals                                 #
#                                                                              #
################################################################################

  def validation_fn(train_state, batch, seed=0):
    params = train_state["params"]

    local_rng = trainer_utils.get_local_rng(seed, batch)

    _, aux = loss_fn(
        params, batch["image"], batch.get("labels"),
        batch.get("cond_image"), local_rng)
    return {
        key: jnp.mean(value, axis=tuple(range(1, value.ndim)))
        for key, value in aux.items()
    }

  def predict_fn_teacher_forcing(train_state, batch, seed=0):
    params = train_state["params"]
    image, labels = batch["image"], batch.get("labels")

    local_rng = trainer_utils.get_local_rng(seed, batch)

    rng_dropout = {"dropout": local_rng}
    sequence = vae_encode(image, rng_dropout)

    if adaptor is not None:
      # Use the adaptor to map from VAE latent space to GIVT in/output space.
      sequence = adaptor.apply({"params": params["params_adaptor"]},
                               sequence, method=adaptor.forward)

    b, s, _ = sequence.shape
    # This is None for the non-mask style. Otherwise, shape (b, s) of zeros
    # (nothing masked).
    input_mask = model.get_input_mask_teacher_forced((b, s))

    _, pdf = model.apply(
        {"params": params}, sequence, labels,
        train=True, input_mask=input_mask, rngs=rng_dropout)

    rng_sample, _ = jax.random.split(local_rng, 2)
    sampled_sequence = pdf.sample(seed=rng_sample)

    if adaptor is not None:
      # Use the adaptor inverse to map back to the VAE latent space
      sampled_sequence = adaptor.apply({"params": params["params_adaptor"]},
                                       sampled_sequence, method=adaptor.inverse)
    logits = vae.apply(
        {"params": params_vae}, sampled_sequence, method=vae.decode)

    return {"logits": logits}

  def predict_fn_rep(train_state, image, seed=0):
    assert model.style == "ar"
    assert model.drop_labels_probability == 1.0
    params = train_state["params"]

    local_rng = trainer_utils.get_local_rng(seed, batch)

    rng_dropout = {"dropout": local_rng}
    sequence = vae_encode(image, rng_dropout)
    placeholder_labels = jnp.zeros((sequence.shape[0],), dtype=jnp.int32)

    return model.apply({"params": params}, sequence, labels=placeholder_labels,
                       return_reps=True, method=model.decode)

  def predict_fn_sampling(train_state, batch, seed=0):
    params = train_state["params"]
    labels = batch.get("labels")

    local_rng = trainer_utils.get_local_rng(seed, batch)
    code_logprobs = None

    if model.style == "ar":
      if labels is None:
        # Try to infer batch size if labels are not provided
        if "image" in batch:
          sampling_batch_size = batch["image"].shape[0]
        elif "cond_image" in batch:
          sampling_batch_size = batch["cond_image"].shape[0]
        else:
          sampling_batch_size = config.get("sampling_batch_size", 4)
      else:
        sampling_batch_size = None
      sampled_codes, code_logprobs = softar_decode.generate(
          params={"params": params},
          seed=local_rng,
          model=model,
          seq_len=config.model.seq_len,
          feature_dim=config.model.out_dim,
          labels=labels,
          cond_image=batch.get("cond_image"),
          batch_size=sampling_batch_size,
          config=config.get("ar_generation_config"),
      )
    elif model.style == "masked":
      assert "cond_image" not in batch
      sampled_codes = parallel_decode.decode_masked(  # pytype: disable=wrong-arg-types
          rng=local_rng,
          labels=labels,
          seq_len=config.model.seq_len,
          feature_dim=config.model.out_dim,
          model=model,
          variables={"params": params},
          config=parallel_decode.MaskedGenerationConfig(
              **config.get("masked_generation_config", {})
          ),
      ).current_inputs_q
    else:
      raise NotImplementedError

    if adaptor is not None:
      # Use the adaptor inverse to map back to the VAE latent space.
      sampled_codes = adaptor.apply({"params": params["params_adaptor"]},
                                    sampled_codes, method=adaptor.inverse)

    sampled_images = vae.apply(
        {"params": params_vae}, sampled_codes, method=vae.decode)

    sampling_results = {"logits": sampled_images}
    if code_logprobs is not None:
      sampling_results["logprobs"] = code_logprobs

    return sampling_results

  def predict_fn_sampling_panoptic(
      train_state, batch, seed=0, min_fraction=0.0):
    logits = predict_fn_sampling(train_state, batch, seed)["logits"]
    return panoptic_task.panoptic_predictions_from_logits(
        logits["semantics"], logits["instances"], min_fraction=min_fraction)

  def predict_fn_sampling_depth(train_state, batch, seed=0):
    depth = predict_fn_sampling(train_state, batch, seed)["logits"]["depth"]
    depth = trainer_utils.unbin_depth(
        depth, min_depth=config.min_depth, max_depth=config.max_depth,
        num_bins=config.vae.model.inout_specs["depth"][1])
    return {"depth": depth}

  # Only initialize evaluators when they are first needed.
  @functools.lru_cache(maxsize=None)
  def evaluators():
    return eval_common.from_config(
        config,
        {
            "validation": validation_fn,
            "sample_teacher_forced": predict_fn_teacher_forcing,
            "sample": predict_fn_sampling,
            "sample_panoptic": predict_fn_sampling_panoptic,
            "sample_depth": predict_fn_sampling_depth,
            "representation": predict_fn_rep,
        },
        lambda s: write_note(f"Init evaluator: {s}…\n{u.chrono.note}"),
        lambda key, cfg: get_steps(key, default=None, cfg=cfg),
        devices_flat,
    )

  # Decide how to initialize training. The order is important.
  # 1. Always resumes from the existing checkpoint, e.g. resumes a finetune job.
  # 2. Resume from a previous checkpoint, e.g. start a cooldown training job.
  # 3. Initialize model from something, e,g, start a fine-tuning job.
  # 4. Train from scratch.
  resume_ckpt_path = None
  if save_ckpt_path and gfile.exists(f"{save_ckpt_path}-LAST"):
    resume_ckpt_path = save_ckpt_path
  elif config.get("resume"):
    resume_ckpt_path = fillin(config.resume)

  ckpt_mngr = None
  if save_ckpt_path or resume_ckpt_path:
    ckpt_mngr = array_serial.GlobalAsyncCheckpointManager()

  if resume_ckpt_path:
    write_note(f"Resuming training from checkpoint {resume_ckpt_path}...")
    jax.tree_map(lambda x: x.delete(), train_state)
    del train_state
    shardings = {
        **train_state_sharding,
        "chrono": jax.tree_map(lambda _: repl_sharding,
                               u.chrono.save()),
    }
    loaded = u.load_checkpoint_ts(
        resume_ckpt_path, tree=shardings, shardings=shardings)
    train_state = {key: loaded[key] for key in train_state_sharding.keys()}

    u.chrono.load(jax.device_get(loaded["chrono"]))
    del loaded
  elif config.get("model_init"):
    write_note(f"Initialize model from {config.model_init}...")
    train_state["params"] = model_mod.load(
        train_state["params"], config.model_init, config.get("model"),
        **config.get("model_load", {}))

    # load has the freedom to return params not correctly sharded
    train_state["params"] = u.reshard(
        train_state["params"], train_state_sharding["params"])

    parameter_overview.log_parameter_overview(
        train_state["params"], msg="restored params",
        include_stats="global", jax_logging_process=0)

  # At this point we need to know the current step to see whether to run evals.
  write_note("Inferring the first step number...")
  first_step_device = bv_optax.get_count(train_state["opt"], jittable=True)
  first_step = int(jax.device_get(first_step_device))
  u.chrono.inform(first_step=first_step)

  # Note that training can be pre-empted during the final evaluation (i.e.
  # just after the final checkpoint has been written to disc), in which case we
  # want to run the evals.
  if first_step in (total_steps, 0):
    write_note("Running initial or final evals...")
    mw.step_start(first_step)
    for (name, evaluator, _, prefix) in evaluators():
      if config.evals[name].get("skip_first") and first_step != total_steps:
        continue
      write_note(f"{name} evaluation...\n{u.chrono.note}")
      with u.chrono.log_timing(f"z/secs/eval/{name}"):
        with mesh, flax.linen.logical_axis_rules(sharding_rules):
          for key, value in evaluator.run(train_state):
            mw.measure(f"{prefix}{key}", value)

################################################################################
#                                                                              #
#                                  Train Loop                                  #
#                                                                              #
################################################################################

  prof = None  # Keeps track of start/stop of profiler state.

  write_note("Starting training loop, compiling the first step...")
  for step, batch in zip(range(first_step + 1, total_steps + 1), train_iter):
    # Skip training loop when running an eval-only config
    if config.get("eval_only", False):
      break
    mw.step_start(step)

    with jax.profiler.StepTraceAnnotation("train_step", step_num=step):
      with u.chrono.log_timing("z/secs/update0", noop=step > first_step + 1):
        with mesh, flax.linen.logical_axis_rules(sharding_rules):
          train_state, measurements = update_fn(train_state, rng_loop, batch)

    # On the first host, let's always profile a handful of early steps.
    if jax.process_index() == 0:
      prof = u.startstop_prof(prof, step, first_step, get_steps("log_training"))

    # Report training progress
    if (u.itstime(step, get_steps("log_training"), total_steps, host=0)
        or u.chrono.warmup and jax.process_index() == 0):
      for i, sched_fn_cpu in enumerate(sched_fns_cpu):
        mw.measure(f"global_schedule{i if i else ''}",
                   sched_fn_cpu(u.put_cpu(step - 1)))
      measurements = jax.device_get(measurements)
      for name, value in measurements.items():
        mw.measure(name, value)
      u.chrono.tick(step)
      if not np.isfinite(measurements["training_loss"]):
        raise RuntimeError(f"The loss became nan or inf somewhere within steps "
                           f"[{step - get_steps('log_training')}, {step}]")

    # Checkpoint saving
    keep_ckpt_steps = get_steps("keep_ckpt", None) or total_steps
    if save_ckpt_path and (
        (keep := u.itstime(step, keep_ckpt_steps, total_steps, first=False))
        or u.itstime(step, get_steps("ckpt", None), total_steps, first=True)
    ):
      u.chrono.pause(wait_for=train_state)

      # Copy because we add extra stuff to the checkpoint.
      ckpt = {**train_state}

      # To save chrono state correctly and safely in a multihost setup, we
      # broadcast the state to all hosts and convert it to a global array.
      with jax.transfer_guard("allow"):
        chrono_ckpt = multihost_utils.broadcast_one_to_all(u.chrono.save())
      chrono_shardings = jax.tree_map(lambda _: repl_sharding, chrono_ckpt)
      ckpt = ckpt | {"chrono": u.reshard(chrono_ckpt, chrono_shardings)}

      u.save_checkpoint_ts(ckpt_mngr, ckpt, save_ckpt_path, step, keep)
      u.chrono.resume()

    for (name, evaluator, log_steps, prefix) in evaluators():
      if u.itstime(step, log_steps, total_steps, first=False, last=True):
        u.chrono.pause(wait_for=train_state)
        u.chrono.tick(step)  # Record things like epoch number, core hours etc.
        write_note(f"{name} evaluation...\n{u.chrono.note}")
        with u.chrono.log_timing(f"z/secs/eval/{name}"):
          with mesh, flax.linen.logical_axis_rules(sharding_rules):
            for key, value in evaluator.run(train_state):
              mw.measure(f"{prefix}{key}", jax.device_get(value))
        u.chrono.resume()
    mw.step_end()

  # Always give a chance to stop the profiler, no matter how things ended.
  if jax.process_index() == 0 and prof is not None:
    u.startstop_prof(prof)

  # Last note needs to happen before the pool's closed =)
  write_note(f"Done!\n{u.chrono.note}")

  pool.close()
  pool.join()
  mw.close()

  if ckpt_mngr:
    ckpt_mngr.wait_until_finished()

  # Make sure all hosts stay up until the end of main.
  u.sync()

  u.maybe_cleanup_workdir(workdir, flags.FLAGS.cleanup, info)


if __name__ == "__main__":
  app.run(main)