File size: 16,734 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Prediction functions for PaliGemma."""

import collections
import functools

from big_vision.pp import registry
import big_vision.utils as u
import einops
import jax
import jax.numpy as jnp
import numpy as np


P = jax.sharding.PartitionSpec

# pylint: disable=missing-function-docstring


def get_all(model):
  """Returns `predict_fns` for evaluators."""
  fns = {
      "logits": _logits,
      "image_avg_repr": _image_avg_repr,
      "decode": _decode,
      "decode_with_logp": _decode_with_logp,
      "beam_decode": _beam_decode,
  }
  return {name: functools.partial(fn, model=model) for name, fn in fns.items()}


def _logits(train_state, batch, *, model):
  images, text, mask = batch["image"], batch["text"], batch["mask_ar"]
  text_logits, out = model.apply(
      {"params": train_state["params"]},
      images, text[:, :-1], mask[:, :-1],
  )
  return text_logits, out


def _image_avg_repr(train_state, batch, *, model, key="img/pre_logits"):
  zimg, out = model.apply(
      {"params": train_state["params"]},
      image=batch["image"],
      method=model.embed_image,
  )
  if key:
    zimg = u.tree_get(out, key)
  # At this point, zimg is a (batch of) sequence of image tokens, because we
  # assume the model is a vit with "none" head. This predict-fn is for fewshot
  # evaluator, so we need to turn it into reasonably-sized vector -> avg.
  zimg = jnp.mean(zimg, axis=range(1, zimg.ndim - 1))
  return zimg, out


def _decode_with_logp(
    train_state, batch, *, model, devices, max_decode_len, eos_token,
    best_of_n=1, sampler="greedy", replicate_out=False, eos_look_behind=0):
  """Sample token continuations to the input sequences."""
  mesh = jax.sharding.Mesh(devices, ("devices",))
  replicate_sharding = jax.sharding.NamedSharding(mesh, P())
  out_sharding = jax.sharding.NamedSharding(
      mesh, P() if replicate_out else P("devices")
  )

  # Prefill the model cache and generate logits for first token.
  logits, cache = jax.jit(
      _prefill_cache,
      out_shardings=out_sharding,
      static_argnames=("model", "max_decode_len"),
  )(
      train_state["params"],
      {
          "image": batch["image"],
          "text": batch["text"],
          "mask_input": batch["mask_input"],
          "mask_ar": batch["mask_ar"],
      },
      model=model,
      max_decode_len=max_decode_len,
  )

  # Mask indicating real examples. False if example is used to pad the batch.
  mask = batch["_mask"]

  # Repeat example in case we are picking the best of n.
  logits, cache, mask = jax.jit(
      _bon_repeat,
      static_argnames=("n",)
  )((logits, cache, mask), n=best_of_n)

  decode_sample_output = jax.jit(
      _decode_sample_output,
      static_argnames=("max_decode_len", "sampler"),
  )
  decode_early_stop = jax.jit(
      _decode_early_stop,
      out_shardings=replicate_sharding,
      static_argnames=("eos_token",),
  )
  extend_cache = jax.jit(
      _extend_cache,
      donate_argnums=1,
      static_argnames=("model",),
  )

  # Keep sampling tokens from last logits until EOS or max_decode_len.
  state = None
  # Setting `eos_look_behind>0` removes blocking transfer with small batches.
  stops = collections.deque(maxlen=1 + eos_look_behind)
  for idx in range(max_decode_len):
    tokens, state = decode_sample_output(
        state, logits, max_decode_len=max_decode_len, sampler=sampler
    )

    if idx + 1 >= max_decode_len:
      break

    stops.append(decode_early_stop(state, mask, eos_token=eos_token))
    if len(stops) == stops.maxlen and jax.device_get(stops[0]):
      break

    # Compute logits for next token
    logits, cache = extend_cache(
        train_state["params"], cache, tokens, model=model
    )

  # Select the best of n sample for each example.
  _, tokens, logp = jax.jit(
      _bon_select,
      out_shardings=out_sharding,
      static_argnames=("n", "eos_token"),
  )(state, n=best_of_n, eos_token=eos_token)

  return tokens, logp


def _decode(train_state, batch, **kwargs):
  tokens, _ = _decode_with_logp(train_state, batch, **kwargs)
  return tokens


def _bon_repeat(tree, *, n):
  return jax.tree.map(lambda x: jnp.repeat(x, n, axis=0), tree)


def _compute_score(tokens, logp, eos_token):
  """Compute log-probability of each sequence up to first eos (including it)."""
  seqlen = jnp.sum(jnp.cumsum(tokens == eos_token, axis=-1) == 0, axis=-1) + 1
  token_mask = jnp.arange(tokens.shape[-1]) < seqlen[..., None]
  scores = jnp.sum(logp * token_mask, axis=-1)
  return scores


def _bon_select(state, *, n, eos_token):
  """Pick the sampled sequence with the highest likelihood for each example."""
  (_, tokens, logp) = state

  # Filter state to only keep the best of each example.
  scores = _compute_score(tokens, logp, eos_token)
  scores = einops.rearrange(scores, "(b n) -> b n", n=n)
  state = jax.tree.map(
      lambda x: einops.rearrange(x, "(b n) l -> b n l", n=n), state)
  best_indices = jnp.argmax(scores, -1)  # [b]
  state = jax.tree.map(
      lambda x: jnp.take_along_axis(x, best_indices[:, None, None], axis=1),
      state)
  state = jax.tree.map(lambda x: x[:, 0], state)

  return state


def _decode_sample_output(state, logits, *, max_decode_len, sampler):
  if state is None:
    # Decode state keeps track of sampled tokens and their logp.
    bs = logits.shape[0]
    seqlen = jnp.zeros((bs, 1), dtype=jnp.int32)
    tokens = jnp.zeros((bs, max_decode_len), dtype=jnp.int32)
    logp = jnp.zeros((bs, max_decode_len), dtype=logits.dtype)
  else:
    (seqlen, tokens, logp) = state

  # Sample tokens.
  sampled_tokens, sampled_logp = _sample_logits(logits, sampler=sampler)

  # Update state with sampled outputs.
  new_len = seqlen + 1
  new_tokens = _put_along_last_axis(tokens, seqlen, sampled_tokens)
  new_logp = _put_along_last_axis(logp, seqlen, sampled_logp)
  new_state = (new_len, new_tokens, new_logp)

  return sampled_tokens, new_state


def _decode_early_stop(state, mask, *, eos_token):
  (seqlen, tokens, unused_logp) = state
  token_mask = jnp.arange(tokens.shape[-1])[None, :] < seqlen
  has_eos = jnp.any(jnp.logical_and(tokens == eos_token, token_mask), axis=-1)
  done = jnp.logical_or(has_eos, jnp.logical_not(mask))
  return jnp.all(done)


def _put_along_last_axis(arr, indices, values):
  """Like np.put_along_axis(..., axis=-1), since jax is missing it."""
  assert arr.ndim == indices.ndim == values.ndim, (
      arr.ndim, indices.ndim, values.ndim)
  onehot = jax.nn.one_hot(indices, arr.shape[-1], dtype=values.dtype)
  put_mask = jnp.einsum("...i,...in->...n",
                        jnp.ones(values.shape, jnp.int32), onehot)
  put_values = jnp.einsum("...i,...in->...n", values, onehot)
  return jnp.where(put_mask, put_values, arr)


def _prefill_cache(params, batch, *, model, max_decode_len):
  """Initialize the model cache for decoding with the prompts."""
  variables = {"params": params}
  (x, input_mask, mask_ar), _ = model.apply(
      variables, batch["image"], batch["text"],
      input_mask=batch["mask_input"],
      mask_ar=batch["mask_ar"],
      method=model.embed_image_and_text)
  last_logits, variables = model.apply(
      variables, x, input_mask, mask_ar,
      cache_size=x.shape[1] + max_decode_len,
      method=model.prefill_cache,
      mutable=("cache",))
  return last_logits, variables["cache"]


def _extend_cache(params, cache, tokens, *, model):
  """Extend the model cache for decoding with one token per sequence."""
  variables = {"params": params, "cache": cache}
  x, _ = model.apply(variables, tokens, method=model.embed_text)
  last_logits, variables = model.apply(
      variables, x, method=model.extend_cache, mutable=("cache",))
  return last_logits, variables["cache"]


def _sample_logits(logits, sampler):
  """Returns a sampled token and its logp from logits."""
  # Note: Consider making it possible for evaluators to pass rng seed to
  # decode functions. For now generate it from jax.lax and avoid evaluators
  # having to deal with it.
  rng = jax.random.PRNGKey(
      jax.lax.rng_uniform(0, np.iinfo(np.int32).max, tuple()))

  # Use Registry to support specifying things like:
  #  "greedy", "nucleus(0.2)", "temperature(t=1.0)"
  sampled_tokens = registry.Registry.lookup("paligemma_sampler." + sampler)(
      logits=logits, rng=rng)

  # Find the log probability (normalized logits) of selected tokens.
  sampled_logp = jnp.take_along_axis(
      jax.nn.log_softmax(logits, axis=-1),
      sampled_tokens[..., None], -1)[..., 0]

  return sampled_tokens, sampled_logp


@registry.Registry.register("paligemma_sampler.greedy")
def _greedy_sampling(*, logits, rng):
  del rng
  return jnp.argmax(logits, axis=-1)


@registry.Registry.register("paligemma_sampler.temperature")
def _temperature_sampling(t, *, logits, rng):
  return jax.random.categorical(rng, logits / t)


@registry.Registry.register("paligemma_sampler.nucleus")
def _nucleus_sampling(p: float, t: float = 1.0, *, logits, rng):
  logits = logits / t
  neg_inf = np.array(-1.0e7)  # Effective negative infinity.
  logits_sorted = jnp.sort(logits, axis=-1, descending=True)
  sorted_cum_probs = jnp.cumsum(
      jax.nn.softmax(logits_sorted, axis=-1), axis=-1)
  cutoff_index = jnp.sum(sorted_cum_probs < p, axis=-1, keepdims=True)
  cutoff_logit = jnp.take_along_axis(logits_sorted, cutoff_index, axis=-1)
  logits = jnp.where(logits < cutoff_logit,
                     jnp.full_like(logits, neg_inf), logits)
  return jax.random.categorical(rng, logits)


def _beam_decode(train_state, batch, *,
                 model, devices, max_decode_len,
                 eos_token, beam_size, replicate_out=False):
  """Beam search (greedy/top-k exploration)."""
  mesh = jax.sharding.Mesh(devices, ("devices",))
  replicate_sharding = jax.sharding.NamedSharding(mesh, P())
  out_sharding = jax.sharding.NamedSharding(
      mesh, P() if replicate_out else P("devices")
  )

  # Prefill the model cache and generate logits for first token.
  logits, cache = jax.jit(
      _prefill_cache,
      out_shardings=out_sharding,
      static_argnames=("model", "max_decode_len"),
  )(
      train_state["params"],
      {
          "image": batch["image"],
          "text": batch["text"],
          "mask_input": batch["mask_input"],
          "mask_ar": batch["mask_ar"],
      },
      model=model,
      max_decode_len=max_decode_len,
  )

  # Mask indicating real examples. False if example is used to pad the batch.
  mask = batch["_mask"]

  beam_sample_output = jax.jit(
      _beam_sample_output,
      static_argnames=("max_decode_len", "beam_size", "eos_token"),
  )
  beam_early_stop = jax.jit(
      _beam_early_stop,
      out_shardings=replicate_sharding,
      static_argnames=("eos_token",),
  )
  extend_cache = jax.jit(
      _extend_cache,
      donate_argnums=1,
      static_argnames=("model",),
  )

  # Keep sampling tokens from last logits until EOS or max_decode_len.
  state = None
  for idx in range(max_decode_len):
    tokens, state, cache = beam_sample_output(
        state, logits, cache,
        max_decode_len=max_decode_len, beam_size=beam_size, eos_token=eos_token)

    early_stop = beam_early_stop(state, mask, eos_token=eos_token)
    if jax.device_get(early_stop) or (idx + 1 >= max_decode_len):
      break

    # Compute logits for next token
    logits, cache = extend_cache(
        train_state["params"], cache, tokens, model=model)

  return jax.jit(_beam_make_output, out_shardings=out_sharding)(state)


def _beam_early_stop(state, mask, eos_token):
  (best_tokens, best_logp, seqlen, unused_tokens, logp) = state

  # Scores of finalized sequences.
  best_scores = _compute_score(best_tokens, best_logp, eos_token)

  # Scores of live sequences.
  live_mask = jnp.arange(logp.shape[-1])[None, None] < seqlen
  live_scores = jnp.sum(logp * live_mask, axis=-1)
  live_scores = jnp.max(live_scores, axis=1)

  done = live_scores < best_scores
  return jnp.all(jnp.logical_or(done, jnp.logical_not(mask)))


def _beam_make_output(state):
  (best_tokens, *_) = state
  return best_tokens[:, 0, ...]


def _beam_sample_output(state, logits, cache, *,
                        beam_size, max_decode_len, eos_token):
  assert logits.shape[1] == 1
  logits = jax.nn.log_softmax(logits[:, 0, :])  # Normalize logits

  if state is None:
    bs = logits.shape[0]
    # Beam decode state keeps track of:
    # A) Best sampled output for each example. At initialization these have
    # shape[1]=0, but end up with shape[1]=1 after first call.
    best_tokens = jnp.zeros((bs, 0, max_decode_len), dtype=jnp.int32)
    best_logp = jnp.zeros((bs, 0, max_decode_len), dtype=logits.dtype)
    # B) N candidate sequences for each example. At initialization these have
    # beam_size=1, but end up with correct beam_size when expanded.
    seqlen = jnp.zeros((bs, 1, 1), dtype=jnp.int32)
    tokens = jnp.zeros((bs, 1, max_decode_len), dtype=jnp.int32)
    logp = jnp.zeros((bs, 1, max_decode_len), dtype=logits.dtype)
  else:
    (best_tokens, best_logp, seqlen, tokens, logp) = state
    bs = logits.shape[0] // beam_size
    assert best_tokens.shape[0] == bs

  # Reshape cache to [example, candidate, ...].
  # Note: on first call the number of candidates is 1. Later it is beam_size.
  cache, logits = jax.tree.map(
      lambda x: einops.rearrange(x, "(b n) ... -> b n ...", b=bs),
      (cache, logits))

  # Consider a live sequence could end now and update the best finished
  # sequences so far for each example. This strategy is found in some beam
  # implementations such as in praxis.
  # The code below also adjusts the best shape[1]=0 -> 1 during first call.
  eos_tokens = jnp.array(eos_token)[None, None, None]
  new_tokens = _put_along_last_axis(tokens, seqlen, eos_tokens)
  new_logp = _put_along_last_axis(logp, seqlen, logits[:, :, eos_token, None])

  best_tokens = jnp.concatenate([best_tokens, new_tokens], axis=1)
  best_logp = jnp.concatenate([best_logp, new_logp], axis=1)
  best_scores = _compute_score(best_tokens, best_logp, eos_token=eos_token)
  _, top_indices = jax.lax.top_k(best_scores, k=1)

  best_tokens = jnp.take_along_axis(best_tokens, top_indices[..., None], axis=1)
  best_logp = jnp.take_along_axis(best_logp, top_indices[..., None], axis=1)

  # To find the next best N live candidates we expand each candidate and keep
  # the best N (ignoring EOS tokens). In this case we expand into (N+1)
  # candidates and set their likelihood to "-inf" (if EOS) after the fact.
  live_mask = jnp.arange(logp.shape[-1])[None, None] < seqlen
  live_scores = jnp.sum(logp * live_mask, axis=-1)
  topk_logits, topk_tokens = jax.lax.top_k(logits, beam_size+1)
  scores = live_scores[..., None] + topk_logits
  scores = jnp.where(
      topk_tokens != eos_token, scores, jnp.finfo(scores.dtype).min)

  # From the N*(N+1) candidates find the top N for each example.
  topk_logits, topk_tokens, scores = jax.tree.map(
      lambda x: einops.rearrange(x, "b n np1 -> b (n np1)"),
      (topk_logits, topk_tokens, scores))
  _, topk_indices = jax.lax.top_k(scores, k=beam_size)
  sampled_indices = topk_indices // (beam_size+1)
  sampled_tokens = jnp.take_along_axis(
      topk_tokens, topk_indices, axis=-1)[..., None]
  sampled_logits = jnp.take_along_axis(
      topk_logits, topk_indices, axis=-1)[..., None]

  # Adjust cache and state so it matches the selected top N input candidates.
  # This also adjusts the beam_size=1->n during first call.
  def take_candidates(x):
    one_hot_matrix = jax.nn.one_hot(sampled_indices, x.shape[1], dtype=x.dtype)
    return jnp.einsum("bi...,boi->bo...", x, one_hot_matrix)
  cache, seqlen, tokens, logp = jax.tree.map(
      take_candidates, (cache, seqlen, tokens, logp))

  # Write the sampled tokens/logits on the reshuffled state.
  tokens = _put_along_last_axis(tokens, seqlen, sampled_tokens)
  logp = _put_along_last_axis(logp, seqlen, sampled_logits)
  seqlen = seqlen + 1

  state = (best_tokens, best_logp, seqlen, tokens, logp)

  # Reshape to [(example, candidate), ...].
  sampled_tokens, cache = jax.tree.map(
      lambda x: einops.rearrange(x, "b n ... -> (b n) ..."),
      (sampled_tokens, cache))

  return sampled_tokens, state, cache