|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""A config for training MLP-Mixer-B/16 model on ILSVRC-2012 ("ImageNet-1k"). |
|
|
|
Achieves 76.3% top-1 accuracy on the test split in 2h11m on TPU v3-128 |
|
with 300 epochs. A shorter 60 epochs run is expected to get to 70.5% in 27m. |
|
|
|
big_vision.train \ |
|
--config big_vision/configs/mlp_mixer_i1k.py \ |
|
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \ |
|
""" |
|
|
|
from big_vision.configs.common_fewshot import get_fewshot_lsr |
|
import ml_collections as mlc |
|
|
|
|
|
def get_config(mode=None): |
|
"""Config for training Mixer on i1k.""" |
|
config = mlc.ConfigDict() |
|
|
|
config.seed = 0 |
|
config.total_epochs = 300 |
|
config.num_classes = 1000 |
|
config.loss = 'sigmoid_xent' |
|
config.init_head_bias = -6.9 |
|
|
|
config.input = dict() |
|
config.input.data = dict( |
|
name='imagenet2012', |
|
split='train[:99%]', |
|
) |
|
config.input.batch_size = 4096 |
|
config.input.cache_raw = True |
|
config.input.shuffle_buffer_size = 250_000 |
|
|
|
config.input.pp = ( |
|
'decode_jpeg_and_inception_crop(224)' |
|
'|flip_lr' |
|
'|randaug(2,15)' |
|
'|value_range(-1, 1)' |
|
'|onehot(1000, key="label", key_result="labels")' |
|
'|keep("image", "labels")' |
|
) |
|
pp_eval = ( |
|
'decode' |
|
'|resize_small(256)|central_crop(224)' |
|
'|value_range(-1, 1)' |
|
'|onehot(1000, key="{lbl}", key_result="labels")' |
|
'|keep("image", "labels")' |
|
) |
|
|
|
|
|
config.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'archive.randaug'] |
|
|
|
config.log_training_steps = 50 |
|
config.ckpt_steps = 1000 |
|
|
|
config.prefetch_to_device = 2 |
|
|
|
|
|
config.model_name = 'mlp_mixer' |
|
config.model = dict() |
|
config.model.variant = 'B/16' |
|
config.model.stoch_depth = 0.1 |
|
|
|
config.mixup = dict(fold_in=None, p=0.5) |
|
|
|
|
|
config.optax_name = 'scale_by_adam' |
|
config.grad_clip_norm = 1. |
|
|
|
config.lr = 0.001 |
|
config.wd = 1e-4 |
|
config.schedule = dict( |
|
decay_type='linear', |
|
warmup_steps=10_000, |
|
linear_end=1e-5, |
|
) |
|
|
|
|
|
def get_eval(split, dataset='imagenet2012'): |
|
return dict( |
|
type='classification', |
|
data=dict(name=dataset, split=split), |
|
pp_fn=pp_eval.format(lbl='label'), |
|
loss_name=config.loss, |
|
log_steps=2500, |
|
cache_final=mode != 'gpu8', |
|
) |
|
config.evals = {} |
|
config.evals.train = get_eval('train[:2%]') |
|
config.evals.minival = get_eval('train[99%:]') |
|
config.evals.val = get_eval('validation') |
|
config.evals.v2 = get_eval('test', dataset='imagenet_v2') |
|
config.evals.real = get_eval('validation', dataset='imagenet2012_real') |
|
config.evals.real.pp_fn = pp_eval.format(lbl='real_label') |
|
|
|
config.fewshot = get_fewshot_lsr() |
|
|
|
if mode == 'gpu8': |
|
config.total_epochs = 60 |
|
config.input.batch_size = 512 |
|
config.input.cache_raw = False |
|
if mode == 'regression_test': |
|
config.total_epochs = 60 |
|
|
|
return config |
|
|