|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Distilling BiT-R152x2 into BiT-R50x1 on Flowers/Pet as in https://arxiv.org/abs/2106.05237 |
|
|
|
While many epochs are required, this is a small dataset, and thus overall it |
|
is still fast and possible to run on the relatively small v3-8TPUs (or GPUs). |
|
|
|
This configuration contains the recommended settings from Fig3/Tab4 of the |
|
paper, which can be selected via the fast/medium/long config argument. |
|
(best settings were selected on a 10% minival) |
|
|
|
For Flowers: |
|
- The `fast` variant takes ~1h10m on a v2-8 TPU. |
|
Example logs at gs://big_vision/distill/bit_flowers_fast_06-18_2008/big_vision_metrics.txt |
|
- The `long` variant takes ~25h on a v3-32 TPU. |
|
Example logs at gs://big_vision/distill/bit_flowers_long_06-19_0524/big_vision_metrics.txt |
|
For Pet: |
|
- The `fast` variant takes ~28min on a v2-8 TPU. |
|
Example logs at gs://big_vision/distill/bit_pet_fast_06-16_2338/big_vision_metrics.txt |
|
- The `long` variant takes ~11h on a v2-8 and ~8h on a v3-32. |
|
Example logs at gs://big_vision/distill/bit_pet_long_06-17_0050/big_vision_metrics.txt |
|
|
|
big_vision.trainers.proj.distill.distill \ |
|
--config big_vision/configs/proj/distill/bigsweep_flowers_pet.py:data=flowers,variant=fast \ |
|
--workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \ |
|
""" |
|
|
|
import big_vision.configs.common as bvcc |
|
import big_vision.configs.proj.distill.common as cd |
|
import ml_collections as mlc |
|
|
|
NCLS = dict(flowers=102, pet=37) |
|
|
|
|
|
def get_config(arg=None): |
|
"""Config for massive hypothesis-test on pet.""" |
|
arg = bvcc.parse_arg(arg, runlocal=False, data='flowers', variant='medium', crop='inception_crop(128)') |
|
config = mlc.ConfigDict() |
|
|
|
config.input = {} |
|
config.input.data = dict( |
|
name=dict(flowers='oxford_flowers102', pet='oxford_iiit_pet')[arg.data], |
|
split=dict(flowers='train', pet='train[:90%]')[arg.data], |
|
) |
|
config.input.batch_size = 512 |
|
config.input.cache_raw = True |
|
config.input.shuffle_buffer_size = 50_000 |
|
config.prefetch_to_device = 4 |
|
|
|
config.num_classes = NCLS[arg.data] |
|
config.total_epochs = { |
|
'flowers': {'fast': 10_000, 'medium': 100_000, 'long': 1_000_000}, |
|
'pet': {'fast': 1000, 'medium': 3000, 'long': 30_000}, |
|
}[arg.data][arg.variant] |
|
|
|
config.log_training_steps = 100 |
|
config.ckpt_steps = 2500 |
|
|
|
|
|
config.student_name = 'bit_paper' |
|
config.student = dict(depth=50, width=1) |
|
|
|
config.teachers = ['prof_m'] |
|
config.prof_m_name = 'bit_paper' |
|
config.prof_m_init = cd.inits[f'BiT-M R152x2 {arg.data} rc128'] |
|
config.prof_m = dict(depth=152, width=2) |
|
|
|
|
|
pp_common = ( |
|
'|value_range(-1, 1)' |
|
f'|onehot({config.num_classes}, key="label", key_result="labels")' |
|
'|keep("image", "labels")' |
|
) |
|
config.input.pp = f'decode|{arg.crop}|flip_lr' + pp_common |
|
ppv = 'decode|resize_small(160)|central_crop(128)' + pp_common |
|
|
|
config.mixup = dict(p=1.0) |
|
|
|
|
|
config.distance = 'kl' |
|
config.distance_kw = dict(t={ |
|
'flowers': {'fast': 10., 'medium': 1., 'long': 1.}, |
|
'pet': {'fast': 5., 'medium': 10., 'long': 2.}, |
|
}[arg.data][arg.variant]) |
|
|
|
|
|
config.grad_clip_norm = 1.0 |
|
config.optax_name = 'scale_by_adam' |
|
config.optax = dict(mu_dtype='bfloat16') |
|
|
|
config.lr = { |
|
'flowers': {'fast': 0.003, 'medium': 0.001, 'long': 0.0003}, |
|
'pet': {'fast': 0.01, 'medium': 0.003, 'long': 0.003}, |
|
}[arg.data][arg.variant] |
|
config.wd = { |
|
'flowers': {'fast': 3e-4, 'medium': 1e-4, 'long': 1e-5}, |
|
'pet': {'fast': 1e-3, 'medium': 3e-4, 'long': 1e-5}, |
|
}[arg.data][arg.variant] |
|
config.schedule = dict(warmup_steps=1500, decay_type='cosine') |
|
config.optim_name = 'adam_hp' |
|
|
|
|
|
minitrain_split = 'train[:512]' if not arg.runlocal else 'train[:16]' |
|
if arg.data == 'flowers': |
|
val_split = 'validation' if not arg.runlocal else 'validation[:16]' |
|
test_split = 'test' if not arg.runlocal else 'test[:16]' |
|
elif arg.data == 'pet': |
|
val_split = 'train[90%:]' if not arg.runlocal else 'train[:16]' |
|
test_split = 'test' if not arg.runlocal else 'test[:16]' |
|
|
|
def get_eval(split): |
|
return dict( |
|
type='classification', |
|
pred='student_fwd', |
|
data=dict(name=config.input.data.name, split=split), |
|
pp_fn=ppv, |
|
loss_name='softmax_xent', |
|
log_steps=500, |
|
) |
|
config.evals = {} |
|
config.evals.student_train = get_eval(minitrain_split) |
|
config.evals.student_val = get_eval(val_split) |
|
config.evals.student_test = get_eval(test_split) |
|
|
|
|
|
teacher = dict(log_steps=100_000, pred='prof_m_fwd') |
|
config.evals.teacher_train = {**config.evals.student_train, **teacher} |
|
config.evals.teacher_val = {**config.evals.student_val, **teacher} |
|
config.evals.teacher_test = {**config.evals.student_test, **teacher} |
|
|
|
|
|
def get_dist(split): |
|
return dict( |
|
type='proj.distill.distance', |
|
pred='student_prof_m_fwd', |
|
data=dict(name=config.input.data.name, split=split), |
|
pp_fn=ppv + '|keep("image")', |
|
log_steps=1000, |
|
distances=({'kind': 'kl'}, {'kind': 'euclidean'}, |
|
{'kind': 'agree', 'k': 1}, {'kind': 'agree', 'k': 5}), |
|
) |
|
config.evals.dist_train = get_dist(minitrain_split) |
|
config.evals.dist_val = get_dist(val_split) |
|
config.evals.dist_test = get_dist(test_split) |
|
|
|
|
|
if arg.runlocal: |
|
config.input.shuffle_buffer_size = 10 |
|
config.input.batch_size = 8 |
|
|
|
return config |