|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Train a GIVT encoder-decoder model on COCO panoptic.""" |
|
|
|
import itertools |
|
import ml_collections |
|
|
|
ConfigDict = ml_collections.ConfigDict |
|
|
|
VTT_MODELS = { |
|
'base': dict(num_layers=12, num_decoder_layers=12, num_heads=12, mlp_dim=3072, emb_dim=768), |
|
'large': dict(num_layers=24, num_decoder_layers=24, num_heads=16, mlp_dim=4096, emb_dim=1024), |
|
} |
|
|
|
RES = 512 |
|
PATCH_SIZE = 16 |
|
LABEL_RES = 512 |
|
LABEL_PATCH_SIZE = 16 |
|
|
|
|
|
def get_config(runlocal=False): |
|
"""Config for training.""" |
|
config = ConfigDict() |
|
|
|
config.input = {} |
|
config.input.pp = ( |
|
f'decode|coco_panoptic|concat(["semantics","instances"], "labels")|' |
|
f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|' |
|
f'inception_box|crop_box(key="image")|crop_box(key="labels")|' |
|
f'resize({RES})|resize({LABEL_RES},key="labels",method="nearest")|' |
|
f'value_range(-1, 1)|make_canonical|' |
|
f'copy("image", "cond_image")|copy("labels", "image")|' |
|
f'keep("image", "cond_image")' |
|
) |
|
pp_eval = ( |
|
f'decode|coco_panoptic|concat(["semantics","instances"], "labels")|' |
|
f'resize({RES})|resize({LABEL_RES},key="labels",method="nearest")|' |
|
f'value_range(-1, 1)|make_canonical|' |
|
f'copy("image", "cond_image")|copy("labels", "image")|' |
|
f'keep("image", "cond_image")' |
|
) |
|
pp_predict = ( |
|
f'decode|resize({RES})|value_range(-1, 1)|copy("image", "cond_image")|' |
|
f'keep("cond_image", "image/id")' |
|
) |
|
|
|
config.input.data = dict(name='coco/2017_panoptic', split='train[4096:]') |
|
config.input.batch_size = 512 |
|
config.input.shuffle_buffer_size = 50_000 |
|
|
|
config.total_epochs = 200 |
|
|
|
config.log_training_steps = 50 |
|
config.ckpt_steps = 1000 |
|
config.keep_ckpt_steps = None |
|
config.prefetch_to_device = 2 |
|
config.seed = 0 |
|
|
|
|
|
config.optax_name = 'big_vision.scale_by_adafactor' |
|
config.optax = dict(beta2_cap=0.95) |
|
|
|
config.ar_generation_config = ml_collections.ConfigDict() |
|
config.ar_generation_config.temp = 0.85 |
|
config.ar_generation_config.temp_probs = 1.0 |
|
config.ar_generation_config.beam_size = 4 |
|
config.ar_generation_config.fan_size = 8 |
|
config.ar_generation_config.rand_top_k = False |
|
config.ar_generation_config.rand_top_k_temp = 1.0 |
|
|
|
config.lr = 0.001 |
|
config.wd = 0.000001 |
|
config.lr_mults = [ |
|
('pos_embedding_encoder.*', 0.1), |
|
('EmbedPatches.*', 0.1), |
|
('encoder.*', 0.1), |
|
('decoder.*', 1.0) |
|
] |
|
config.schedule = dict(decay_type='cosine', warmup_steps=4_000) |
|
|
|
|
|
config.vae = ConfigDict() |
|
config.vae.model_name = 'proj.givt.vit' |
|
config.vae.model = ConfigDict() |
|
config.vae.model.input_size = (RES, RES) |
|
config.vae.model.patch_size = (PATCH_SIZE, PATCH_SIZE) |
|
config.vae.model.code_len = 256 |
|
config.vae.model.width = 768 |
|
config.vae.model.enc_depth = 6 |
|
config.vae.model.dec_depth = 12 |
|
config.vae.model.mlp_dim = 3072 |
|
config.vae.model.num_heads = 12 |
|
config.vae.model.codeword_dim = 16 |
|
config.vae.model.code_dropout = 'none' |
|
config.vae.model.bottleneck_resize = True |
|
|
|
config.vae.model.inout_specs = { |
|
'semantics': (0, 133 + 1), |
|
'instances': (1, 100), |
|
} |
|
config.vae.model_init = 'gs://big_vision/givt/vae_coco_panoptic_params.npz' |
|
|
|
|
|
config.model_name = 'proj.givt.givt' |
|
|
|
|
|
|
|
|
|
config.model_init = {'encoder': 'howto-i21k-L/16'} |
|
config.model_load = dict(dont_load=('cls', 'head/bias', 'head/kernel')) |
|
config.model = ConfigDict(VTT_MODELS['large']) |
|
config.model.patches = (PATCH_SIZE, PATCH_SIZE) |
|
config.model.input_size = (RES, RES) |
|
config.model.posemb_type = 'learn' |
|
config.model.seq_len = config.vae.model.code_len |
|
config.model.num_labels = None |
|
config.model.num_mixtures = 1 |
|
config.model.fix_square_plus = True |
|
config.model.out_dim = config.vae.model.codeword_dim |
|
config.model.scale_tol = 1e-6 |
|
config.model.dec_dropout_rate = 0.0 |
|
|
|
|
|
config.evals = {} |
|
config.evals.val = ConfigDict() |
|
config.evals.val.type = 'mean' |
|
config.evals.val.pred = 'validation' |
|
config.evals.val.data = dict(name=config.input.data.name, split='train[:4096]') |
|
config.evals.val.pp_fn = pp_eval |
|
config.evals.val.log_steps = 1000 |
|
|
|
config.eval_only = False |
|
|
|
base = { |
|
'type': 'proj.givt.coco_panoptic', |
|
'data': {**config.input.data}, |
|
'pp_fn': pp_predict, |
|
'log_steps': 10_000, |
|
'pred': 'sample_panoptic', |
|
|
|
|
|
} |
|
config.evals.coco_panoptic_train = dict(base) |
|
config.evals.coco_panoptic_train.data.split = 'train[4096:8192]' |
|
config.evals.coco_panoptic_holdout = dict(base) |
|
config.evals.coco_panoptic_holdout.data.split = 'train[:4096]' |
|
config.evals.coco_panoptic = dict(base) |
|
config.evals.coco_panoptic.data.split = 'validation' |
|
|
|
config.evals.save_pred = dict(type='proj.givt.save_predictions') |
|
config.evals.save_pred.pred = 'sample_panoptic' |
|
config.evals.save_pred.pp_fn = pp_eval |
|
config.evals.save_pred.log_steps = 100_000 |
|
config.evals.save_pred.data = dict(config.input.data) |
|
config.evals.save_pred.data.split = 'validation[:1024]' |
|
config.evals.save_pred.outfile = 'inference.npz' |
|
|
|
if runlocal: |
|
config.input.batch_size = 4 |
|
config.input.shuffle_buffer_size = 10 |
|
config.evals.val.data.split = 'train[:16]' |
|
config.evals.val.log_steps = 20 |
|
config.model.num_layers = 1 |
|
config.model.num_decoder_layers = 1 |
|
del config.model_init |
|
config.evals.val.data.split = 'validation[:4]' |
|
config.evals.coco_panoptic.data.split = 'validation[:4]' |
|
config.evals.save_pred.data.split = 'validation[:4]' |
|
for k in config.evals.keys(): |
|
if k not in ['val', 'coco_panoptic', 'save_pred']: |
|
del config.evals[k] |
|
|
|
return config |
|
|