|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""PaliGemma transfer to TallyQA. |
|
""" |
|
|
|
import big_vision.configs.common as bvcc |
|
from big_vision.configs.proj.paligemma.transfers.common import combine_and_keep_train, combine_and_keep_eval, TOKENIZER |
|
|
|
|
|
def training_data(res, text_len=32): |
|
"""Creates training data config. |
|
|
|
See (internal link) |
|
You can add more arguments beside `res`, but give them good defaults. |
|
|
|
Args: |
|
res: The requested image resolution (eg 224) |
|
text_len: sequence length |
|
|
|
Returns: |
|
The ConfigDict for the input section. |
|
""" |
|
c = bvcc.parse_arg('') |
|
c.data = dict( |
|
name='tallyqa', |
|
split='train', |
|
) |
|
|
|
c.pp = '|'.join([ |
|
f'decode|resize({res}, antialias=True)|value_range(-1, 1)', |
|
'strfmt("answer en {question}", outkey="prefix")', |
|
'strfmt("{answer}", outkey="suffix")', |
|
combine_and_keep_train(text_len), |
|
]) |
|
return c |
|
|
|
|
|
def countbenchqa_eval_data(res, text_len=32): |
|
"""Creates eval data config for CountBenchQA.""" |
|
c = bvcc.parse_arg('') |
|
c.data = dict( |
|
name='countbenchqa', |
|
split='huggingface', |
|
) |
|
c.pp = '|'.join([ |
|
f'decode|resize({res}, antialias=True)|value_range(-1, 1)', |
|
'strfmt("answer en {question}", outkey="prefix")', |
|
'strfmt("{number}", outkey="answer")', |
|
combine_and_keep_eval(text_len, keep=('answer',)), |
|
]) |
|
return c |
|
|
|
|
|
def add_eval(c, res, text_len=32, **kw): |
|
"""Add eval configs.""" |
|
tallyqa_pp_eval = '|'.join([ |
|
f'decode|resize({res}, antialias=True)|value_range(-1, 1)', |
|
'strfmt("answer en {question}", outkey="prefix")', |
|
'strfmt("{answer}", outkey="answer")', |
|
combine_and_keep_eval(text_len, keep=('answer', 'issimple')), |
|
]) |
|
|
|
for freq, name, split in [ |
|
(0.1, 'minitrain', 'train[:5%]'), |
|
|
|
(1/4, 'eval', 'test'), |
|
]: |
|
c.evals[f'tallyqa/{name}'] = dict( |
|
type='proj.paligemma.transfers.tallyqa', |
|
pred='decode', pred_kw={'max_decode_len': text_len}, |
|
data={**training_data(res, text_len).data, 'split': split}, |
|
log_percent=freq, tokenizer=TOKENIZER, pp_fn=tallyqa_pp_eval) |
|
c.evals[f'tallyqa/{name}'].update(kw) |
|
|
|
|
|
|
|
c.evals['countbenchqa/eval'] = dict( |
|
type='proj.paligemma.transfers.tallyqa', |
|
pred='decode', pred_kw={'max_decode_len': text_len}, |
|
data=countbenchqa_eval_data(res, text_len).data, |
|
log_percent=0.1, |
|
tokenizer=TOKENIZER, |
|
pp_fn=countbenchqa_eval_data(res, text_len).pp) |
|
c.evals['countbenchqa/eval'].update(kw) |
|
|
|
|
|
def add_eval_pplx(c, res, text_len=32): |
|
"""Perplexity evaluator to test runs before implementing the real deal.""" |
|
c_train = training_data(res, text_len) |
|
for name, split in [ |
|
('minitrain', 'train[:5%]'), |
|
|
|
('eval', 'test'), |
|
]: |
|
c.evals[f'tallyqa/{name}/pplx'] = dict( |
|
type='proj.paligemma.perplexity', pred='logits', |
|
key='text', shift_labels=True, |
|
log_percent=0.1, |
|
data={**c_train.data, 'split': split}, |
|
pp_fn=c_train.pp, |
|
) |
|
|
|
|
|
def sweep_best(add, arg=None): |
|
"""Train with best hyper-params.""" |
|
add(total_epochs=2, lr=1e-5, wd=0.00, **bvcc.arg(res=224)) |
|
add(total_epochs=2, lr=1e-5, wd=1e-6, **bvcc.arg(res=448)) |
|
add(total_epochs=2, lr=7e-6, wd=7e-7, **bvcc.arg(res=896)) |
|
|
|
|
|
sweep = sweep_best |
|
|
|
|
|
def get_config(arg=None): |
|
"""Config for training.""" |
|
c = bvcc.parse_arg(arg, mode='xm', res=224) |
|
|
|
c.input = training_data(c.res) |
|
|
|
|
|
c.total_epochs = 2 |
|
c.input.batch_size = 256 |
|
c.optax_name = 'scale_by_adam' |
|
c.optax = dict(b2=0.999) |
|
c.lr = 1e-5 |
|
c.wd = 0.0 |
|
c.grad_clip_norm = 1.0 |
|
c.label_smoothing = 0.0 |
|
c.schedule = dict(decay_type='cosine', warmup_percent=0.05) |
|
|
|
|
|
c.evals = {} |
|
add_eval(c, c.res, batch_size=256) |
|
add_eval_pplx(c, c.res) |
|
|
|
|
|
c.model_name = 'proj.paligemma.paligemma' |
|
c.model = {} |
|
c.model.img = dict(variant='So400m/14', pool_type='none', scan=True) |
|
c.model.llm = dict(vocab_size=256_000 + 1024 + 128, dropout=0.0) |
|
c.model_init = f'pt_{c.res}' |
|
|
|
|
|
c.mesh = [('data', -1)] |
|
c.sharding_strategy = [('.*', 'fsdp(axis="data")')] |
|
c.sharding_rules = [('act_batch', ('data',))] |
|
|
|
|
|
c.input.shuffle_buffer_size = 50_000 |
|
c.log_training_steps = 50 |
|
c.ckpt_steps = 1_000 |
|
c.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'proj.paligemma.ops'] |
|
|
|
|
|
if c.mode in ('runlocal', 'mock'): |
|
c.input.shuffle_buffer_size = None |
|
for ev in c.evals.values(): |
|
ev.data.split = ev.data.split.split('[')[0] + '[:16]' |
|
|
|
if c.mode == 'runlocal': |
|
c.log_training_steps = 1 |
|
c.input.batch_size = 2 |
|
|
|
c.seed = 0 |
|
return c |
|
|
|
|
|
def metrics(arg=None): |
|
"""Returns a list of metric names.""" |
|
return [ |
|
'training_loss', |
|
'countbenchqa/eval/acc', |
|
'tallyqa/minitrain/pplx/avg', |
|
'tallyqa/eval/pplx/avg', |
|
'tallyqa/eval/acc', |
|
'tallyqa/eval/acc/complex', |
|
'tallyqa/eval/acc/simple', |
|
] |
|
|