|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""PaliGemma transfer to VQAv2. |
|
""" |
|
|
|
import big_vision.configs.common as bvcc |
|
from big_vision.configs.proj.paligemma.transfers.common import combine_and_keep_train, combine_and_keep_eval, TOKENIZER |
|
|
|
|
|
def training_data(res, final_split, text_len=48): |
|
"""Creates training data config. |
|
|
|
See (internal link) |
|
You can add more arguments beside `res`, but give them good defaults. |
|
|
|
Args: |
|
res: The requested image resolution (eg 224) |
|
final_split: Train on combined train+val |
|
text_len: sequence length |
|
|
|
Returns: |
|
The ConfigDict for the input section. |
|
""" |
|
c = bvcc.parse_arg('') |
|
c.data = dict( |
|
name='vizwizvqa', |
|
split='train+val' if final_split else 'train', |
|
) |
|
c.pp = '|'.join([ |
|
f'decode|resize({res}, antialias=True)|value_range(-1, 1)', |
|
'strfmt("answer en {question}", outkey="prefix")', |
|
'choice_no_replacement(inkey="answers", outkey="suffix")', |
|
combine_and_keep_train(text_len), |
|
]) |
|
return c |
|
|
|
|
|
def add_eval(c, res, text_len=48, **kw): |
|
"""VQAv2 evaluators.""" |
|
pp = '|'.join([ |
|
f'decode|resize({res})|value_range(-1, 1)', |
|
'strfmt("answer en {question}", outkey="prefix")', |
|
'copy("image/filename", "question_id")', |
|
combine_and_keep_eval(text_len, keep=('answers', 'question_id')), |
|
]) |
|
|
|
for freq, name, split in [ |
|
(1/8, 'minitrain', 'train[:5120]'), |
|
(0.1, 'minival', 'val'), |
|
(1.0, 'test', 'test'), |
|
]: |
|
c.evals[f'vizwizvqa/{name}'] = dict( |
|
type='proj.paligemma.transfers.vqa', |
|
pred='decode', pred_kw={'max_decode_len': text_len}, |
|
outfile=f'{{workdir}}/vizwiz_{name}.json', |
|
out_question_key='image', |
|
data={**training_data(res, True, text_len).data, 'split': split}, |
|
log_percent=freq, tokenizer=TOKENIZER, pp_fn=pp) |
|
c.evals[f'vizwizvqa/{name}'].update(kw) |
|
|
|
|
|
def add_eval_pplx(c, res, text_len=48): |
|
"""Perplexity evaluator to test runs before implementing the real deal.""" |
|
c_train = training_data(res, True, text_len) |
|
for name, split in [ |
|
('minitrain', 'train'), |
|
('minival', 'val'), |
|
]: |
|
c.evals[f'vizwizvqa/{name}/pplx'] = dict( |
|
type='proj.paligemma.perplexity', pred='logits', |
|
key='text', shift_labels=True, |
|
log_percent=1/8, |
|
data={**c_train.data, 'split': split}, |
|
pp_fn=c_train.pp, |
|
) |
|
|
|
|
|
def sweep_best(add, arg=None): |
|
"""Train with best hyper-params.""" |
|
c = bvcc.parse_arg(arg, final_split=False) |
|
add(**bvcc.arg(res=224, **c)) |
|
add(**bvcc.arg(res=448, **c)) |
|
|
|
|
|
sweep = sweep_best |
|
|
|
|
|
def get_config(arg=None): |
|
"""Config for training.""" |
|
c = bvcc.parse_arg(arg, mode='xm', res=224, final_split=False) |
|
|
|
c.input = training_data(c.res, c.final_split) |
|
|
|
|
|
c.total_epochs = 10 |
|
c.input.batch_size = 256 |
|
c.optax_name = 'scale_by_adam' |
|
c.optax = dict(b2=0.999) |
|
c.lr = 0.00001 |
|
c.wd = 0.0 |
|
c.grad_clip_norm = 1.0 |
|
c.label_smoothing = 0.0 |
|
c.schedule = dict(decay_type='cosine', warmup_percent=0.05) |
|
|
|
|
|
c.evals = {} |
|
add_eval(c, c.res, batch_size=1024) |
|
add_eval_pplx(c, c.res) |
|
|
|
|
|
c.model_name = 'proj.paligemma.paligemma' |
|
c.model = {} |
|
c.model.img = dict(variant='So400m/14', pool_type='none', scan=True) |
|
c.model.llm = dict(vocab_size=256_000 + 1024 + 128, dropout=0.0) |
|
c.model_init = f'pt_{c.res}' |
|
|
|
|
|
c.mesh = [('data', -1)] |
|
c.sharding_strategy = [('.*', 'fsdp(axis="data")')] |
|
c.sharding_rules = [('act_batch', ('data',))] |
|
|
|
|
|
c.input.shuffle_buffer_size = 25_000 |
|
c.log_training_steps = 50 |
|
c.ckpt_steps = 1_000 |
|
c.pp_modules = ['ops_general', 'ops_image', 'ops_text', 'proj.paligemma.ops'] |
|
|
|
|
|
if c.mode in ('runlocal', 'mock'): |
|
c.input.shuffle_buffer_size = None |
|
for ev in c.evals.values(): |
|
ev.data.split = ev.data.split.split('[')[0] + '[:16]' |
|
|
|
if c.mode == 'runlocal': |
|
c.log_training_steps = 1 |
|
c.input.batch_size = 2 |
|
|
|
c.seed = 0 |
|
return c |
|
|
|
|
|
def metrics(arg=None): |
|
m = ['training_loss'] |
|
for split in ('minival', 'minitrain'): |
|
m.append(f'vizwizvqa/{split}/acc') |
|
m.append(f'vizwizvqa/{split}/pplx/avg') |
|
return m |
|
|