pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long,missing-function-docstring
r"""A config for transferring vit-augreg.
Best HP selected on (mini)val, expected test results (repeated 5 times):
ViT-Augreg-B/32:
Dataset, crop, learning rate, mean (%), range (%)
- ImageNet, inception_crop, 0.03, 83.27, [83.22...83.33]
- Cifar10, resmall_crop, 0.003, 98.55, [98.46...98.6]
- Cifar100, resmall_crop, 0.01, 91.35, [91.09...91.62]
- Pets, inception_crop, 0.003, 93.78, [93.62...94.00]
- Flowers, inception_crop, 0.003, 99.43, [99.42...99.45]
Command to run:
big_vision.train \
--config big_vision/configs/transfer.py:model=vit-i21k-augreg-b/32,dataset=cifar10,crop=resmall_crop \
--workdir gs://$GS_BUCKET_NAME/big_vision/workdir/`date '+%m-%d_%H%M'` --config.lr=0.03
"""
import big_vision.configs.common as bvcc
import ml_collections as mlc
def _set_model(config, model):
"""Load pre-trained models: vit or bit."""
# Reset the head to init (of zeros) when transferring.
config.model_load = dict(dont_load=['head/kernel', 'head/bias'])
if model == 'vit-i21k-augreg-b/32':
# Load "recommended" upstream B/32 from https://arxiv.org/abs/2106.10270
config.model_name = 'vit'
config.model_init = 'howto-i21k-B/32'
config.model = dict(variant='B/32', pool_type='tok')
elif model == 'vit-i21k-augreg-l/16':
config.model_name = 'vit'
config.model_init = 'howto-i21k-L/16'
config.model = dict(variant='L/16', pool_type='tok')
elif model == 'vit-s16':
config.model_name = 'vit'
config.model_init = 'i1k-s16-300ep'
config.model = dict(variant='S/16', pool_type='gap', posemb='sincos2d',
rep_size=True)
elif model == 'bit-m-r50x1':
config.model_name = 'bit_paper'
config.model_init = 'M'
config.model = dict(depth=50, width=1)
else:
raise ValueError(f'Unknown model: {model}, please define customized model.')
def _set_dataset(config, dataset, crop='inception_crop', h_res=448, l_res=384):
if dataset == 'cifar10':
_set_task(config, 'cifar10', 'train[:98%]', 'train[98%:]', 'test', 10, steps=10_000, warmup=500, crop=crop, h_res=h_res, l_res=l_res)
elif dataset == 'cifar100':
_set_task(config, 'cifar100', 'train[:98%]', 'train[98%:]', 'test', 100, steps=10_000, warmup=500, crop=crop, h_res=h_res, l_res=l_res)
elif dataset == 'imagenet2012':
_set_task(config, 'imagenet2012', 'train[:99%]', 'train[99%:]', 'validation', 1000, steps=20_000, warmup=500, crop=crop, h_res=h_res, l_res=l_res)
_set_imagenet_variants(config)
elif dataset == 'oxford_iiit_pet':
_set_task(config, 'oxford_iiit_pet', 'train[:90%]', 'train[90%:]', 'test', 37, steps=500, warmup=100, crop=crop, h_res=h_res, l_res=l_res)
elif dataset == 'oxford_flowers102':
_set_task(config, 'oxford_flowers102', 'train[:90%]', 'train[90%:]', 'test', 102, steps=500, warmup=100, crop=crop, h_res=h_res, l_res=l_res)
else:
raise ValueError(
f'Unknown dataset: {dataset}, please define customized dataset.')
def _set_task(config, dataset, train, val, test, n_cls,
steps=20_000, warmup=500, lbl='label', crop='resmall_crop',
flip=True, h_res=448, l_res=384):
"""Vision task with val and test splits."""
config.total_steps = steps
config.schedule = dict(
warmup_steps=warmup,
decay_type='cosine',
)
config.input.data = dict(name=dataset, split=train)
pp_common = (
'|value_range(-1, 1)|'
f'onehot({n_cls}, key="{lbl}", key_result="labels")|'
'keep("image", "labels")'
)
if crop == 'inception_crop':
pp_train = f'decode|inception_crop({l_res})'
elif crop == 'resmall_crop':
pp_train = f'decode|resize_small({h_res})|random_crop({l_res})'
elif crop == 'resize_crop':
pp_train = f'decode|resize({h_res})|random_crop({l_res})'
else:
raise ValueError(f'Unknown crop: {crop}. Must be one of: '
'inception_crop, resmall_crop, resize_crop')
if flip:
pp_train += '|flip_lr'
config.input.pp = pp_train + pp_common
pp = f'decode|resize_small({h_res})|central_crop({l_res})' + pp_common
config.num_classes = n_cls
def get_eval(split):
return dict(
type='classification',
data=dict(name=dataset, split=split),
loss_name='softmax_xent',
log_steps=100,
pp_fn=pp,
)
config.evals = dict(val=get_eval(val), test=get_eval(test))
def _set_imagenet_variants(config, h_res=448, l_res=384):
"""Evaluation tasks on ImageNet variants: v2 and real."""
pp = (f'decode|resize_small({h_res})|central_crop({l_res})'
'|value_range(-1, 1)|onehot(1000, key="{lbl}", key_result="labels")|'
'keep("image", "labels")'
)
# Special-case rename for i1k (val+test -> minival+val)
config.evals.minival = config.evals.val
config.evals.val = config.evals.test
# NOTE: keep test == val for convenience in subsequent analysis.
config.evals.real = dict(type='classification')
config.evals.real.data = dict(name='imagenet2012_real', split='validation')
config.evals.real.pp_fn = pp.format(lbl='real_label')
config.evals.real.loss_name = config.loss
config.evals.real.log_steps = 100
config.evals.v2 = dict(type='classification')
config.evals.v2.data = dict(name='imagenet_v2', split='test')
config.evals.v2.pp_fn = pp.format(lbl='label')
config.evals.v2.loss_name = config.loss
config.evals.v2.log_steps = 100
def get_config(arg=None):
"""Config for adaptation."""
arg = bvcc.parse_arg(arg, model='vit', dataset='cifar10', crop='resmall_crop',
h_res=448, l_res=384, batch_size=512, fsdp=False,
runlocal=False)
config = mlc.ConfigDict()
config.input = {}
config.input.batch_size = arg.batch_size if not arg.runlocal else 8
config.input.shuffle_buffer_size = 50_000 if not arg.runlocal else 100
config.log_training_steps = 10
config.ckpt_steps = 1000
config.ckpt_timeout = 600
# Optimizer section
config.optax_name = 'big_vision.momentum_hp'
config.grad_clip_norm = 1.0
config.wd = None # That's our default, but just being explicit here!
config.loss = 'softmax_xent'
config.lr = 0.01
config.mixup = dict(p=0.0)
config.seed = 0
_set_dataset(config, arg.dataset, arg.crop, arg.h_res, arg.l_res)
_set_model(config, arg.model)
if arg.fsdp:
config.mesh = [('data', -1)]
config.sharding_strategy = [('.*', 'fsdp(axis="data")')]
config.sharding_rules = [('act_batch', ('data',))]
config.model.scan = True
return config