|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r"""Implements the OKVQA dataset for TFDS. |
|
|
|
Download the required files from https://okvqa.allenai.org/download.html: |
|
|
|
mkdir -p /tmp/tfds |
|
cd /tmp/tfds/ |
|
wget http://images.cocodataset.org/zips/train2014.zip |
|
wget http://images.cocodataset.org/zips/val2014.zip |
|
wget https://okvqa.allenai.org/static/data/mscoco_train2014_annotations.json.zip |
|
wget https://okvqa.allenai.org/static/data/mscoco_val2014_annotations.json.zip |
|
wget https://okvqa.allenai.org/static/data/OpenEnded_mscoco_train2014_questions.json.zip |
|
wget https://okvqa.allenai.org/static/data/OpenEnded_mscoco_val2014_questions.json.zip |
|
unzip val2014.zip |
|
unzip train2014.zip |
|
unzip OpenEnded_mscoco_train2014_questions.json.zip |
|
unzip OpenEnded_mscoco_val2014_questions.json.zip |
|
unzip mscoco_train2014_annotations.json.zip |
|
unzip mscoco_val2014_annotations.json.zip |
|
|
|
Then, run conversion locally (make sure to install tensorflow-datasets for the |
|
`tfds` util): |
|
|
|
cd big_vision/datasets |
|
env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=okvqa |
|
|
|
Example to load: |
|
|
|
import tensorflow_datasets as tfds |
|
dataset = tfds.load('okvqa', split='val', data_dir='/tmp/tfds') |
|
""" |
|
|
|
import json |
|
import os |
|
from typing import Any |
|
import numpy as np |
|
import tensorflow_datasets as tfds |
|
|
|
_DESCRIPTION = """ |
|
OKVQA addresses the task of VQA with outside knowledge. |
|
This version of the dataset contains: |
|
- Questions + Answers from OKVQA. |
|
- Images from COCO. |
|
""" |
|
|
|
_CITATION = """ |
|
@InProceedings{okvqa, |
|
author = {Kenneth Marino and Mohammad Rastegari and Ali Farhadi and Roozbeh Mottaghi}, |
|
title = {OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge}, |
|
booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}, |
|
year = {2019}, |
|
} |
|
""" |
|
|
|
ANNOTATION_FILE = { |
|
'train': 'mscoco_train2014_annotations.json', |
|
'val': 'mscoco_val2014_annotations.json', |
|
} |
|
QUESTIONS_FILE = { |
|
'train': 'OpenEnded_mscoco_train2014_questions.json', |
|
'val': 'OpenEnded_mscoco_val2014_questions.json', |
|
} |
|
QUESTION_TYPES = { |
|
'one': 'Vehicles and Transportation', |
|
'two': 'Brands, Companies and Products', |
|
'three': 'Objects, Material and Clothing', |
|
'four': 'Sports and Recreation', |
|
'five': 'Cooking and Food', |
|
'six': 'Geography, History, Language and Culture', |
|
'seven': 'People and Everyday life', |
|
'eight': 'Plants and Animals', |
|
'nine': 'Science and Technology', |
|
'ten': 'Weather and Climate', |
|
'other': 'Other', |
|
} |
|
|
|
|
|
|
|
_OKVQA_PATH = '/media/scratch/okvqa' |
|
|
|
|
|
class OkVqa(tfds.core.GeneratorBasedBuilder): |
|
"""Import COCO dataset for OKVQA with KAT features.""" |
|
|
|
VERSION = tfds.core.Version('1.0.0') |
|
RELEASE_NOTES = {'1.0.0': 'Changed to array record format.'} |
|
MANUAL_DOWNLOAD_INSTRUCTIONS = """ |
|
In manual_dir/ you should have a directory okvqa which contains the |
|
following files and directories: |
|
From the OKVQA dataset: |
|
- mscoco_train2014_annotations.json |
|
- mscoco_val2014_annotations.json |
|
- OpenEnded_mscoco_train2014_questions.json |
|
- OpenEnded_mscoco_val2014_questions.json |
|
- train2014.zip |
|
- val2014.zip |
|
""" |
|
|
|
def _info(self) -> tfds.core.DatasetInfo: |
|
"""Returns the dataset metadata.""" |
|
features = tfds.features.FeaturesDict({ |
|
'image': tfds.features.Image(shape=(None, None, 3)), |
|
'image_id': tfds.features.Scalar(dtype=np.int64), |
|
'answer_type': tfds.features.Text(), |
|
'answers': tfds.features.Sequence(tfds.features.Text()), |
|
'answers_confidence': tfds.features.Tensor(shape=[10], dtype=np.bool_), |
|
'answers_raw': tfds.features.Sequence(tfds.features.Text()), |
|
'question_id': tfds.features.Scalar(dtype=np.int64), |
|
'question_type': tfds.features.Text(), |
|
'question_type_readable': tfds.features.Text(), |
|
'question': tfds.features.Text(), |
|
}) |
|
|
|
return tfds.core.DatasetInfo( |
|
builder=self, |
|
features=features, |
|
description=_DESCRIPTION, |
|
supervised_keys=None, |
|
homepage='https://okvqa.allenai.org/', |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: tfds.download.DownloadManager) -> ...: |
|
"""Call the function which defines the splits.""" |
|
|
|
data_dir = _OKVQA_PATH |
|
return { |
|
'train': self._generate_examples(data_dir, 'train'), |
|
'val': self._generate_examples(data_dir, 'val'), |
|
} |
|
|
|
def _generate_examples(self, data_dir: str, split: str) -> ...: |
|
annotations = get_okvqa_annotations(data_dir, split) |
|
|
|
for question_id, annotation in annotations.items(): |
|
image_id = annotation['image_id'] |
|
|
|
|
|
if len(annotation['answers']) != 10: |
|
num_answers = len(annotation['answers']) |
|
raise ValueError( |
|
f'The number of answers for {image_id} is not 10 but {num_answers}') |
|
|
|
feature_dict = { |
|
'image': self.get_image_path(data_dir, split, image_id), |
|
'image_id': image_id, |
|
'answer_type': annotation['answer_type'], |
|
'answers': [a['answer'] for a in annotation['answers']], |
|
'answers_confidence': _get_answer_confidence(annotation['answers']), |
|
'answers_raw': [a['raw_answer'] for a in annotation['answers']], |
|
'question_id': annotation['question_id'], |
|
'question_type': annotation['question_type'], |
|
'question_type_readable': QUESTION_TYPES[annotation['question_type']], |
|
'question': annotation['question'], |
|
} |
|
yield f'{question_id}', feature_dict |
|
|
|
def get_image_path(self, data_dir: str, split: str, image_id: int) -> str: |
|
subdir = {'train': 'train2014', 'val': 'val2014'}[split] |
|
return f'{data_dir}/{subdir}/COCO_{subdir}_{image_id:012d}.jpg' |
|
|
|
|
|
def _get_answer_confidence(answers: list[dict[str, str]]) -> np.ndarray: |
|
"""Get OKVQA answer confidences as bool.""" |
|
confidences = [] |
|
for a in answers: |
|
confidence = a['answer_confidence'] |
|
if confidence == 'yes': |
|
confidences.append(True) |
|
elif confidence == 'no': |
|
confidences.append(False) |
|
else: |
|
raise ValueError(f'Unknown confidence: {confidence}') |
|
return np.array(confidences, dtype=bool) |
|
|
|
|
|
def _read_json( |
|
data_dir: str, file: str, key: str |
|
) -> dict[int, dict[str, Any]]: |
|
with open(os.path.join(data_dir, file)) as f: |
|
data = json.load(f) |
|
questions = {d['question_id']: d for d in data[key]} |
|
return questions |
|
|
|
|
|
def get_okvqa_annotations( |
|
data_dir: str, split: str |
|
) -> dict[int, dict[str, Any]]: |
|
"""Return okvqa annotations (quesions and answers) as dictionary.""" |
|
questions = _read_json(data_dir, QUESTIONS_FILE[split], 'questions') |
|
annotations = _read_json(data_dir, ANNOTATION_FILE[split], 'annotations') |
|
|
|
assert len(annotations) == len(questions) |
|
for question_id, question in questions.items(): |
|
assert question['image_id'] == annotations[question_id]['image_id'] |
|
assert question['question_id'] == annotations[question_id]['question_id'] |
|
annotations[question_id]['question'] = question['question'] |
|
|
|
return annotations |
|
|