pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image encoder + AR-decoder LLM."""
import importlib
from typing import Any, Optional
import flax.linen as nn
import jax
import jax.numpy as jnp
ConfigDict = Any
def make_attn_mask(input_mask, mask_ar):
"""Returns attention mask bool[B, N, N] to use in transformer.
Tokens can attend to valid inputs tokens which have a cumulative mask_ar
smaller or equal to theirs. This way `mask_ar` int[B, N] can be used to
setup several types of attention, for example:
[[1 1 1 1 1 1]]: pure causal attention.
[[0 0 0 1 1 1]]: prefix-lm attention. The first 3 tokens can attend between
themselves and the last 3 tokens have a causal attention. The first
entry could also be a 1 without changing behaviour.
[[1 0 1 0 1 0 0 1 0 0]]: causal attention between 4 blocks. Tokens of a
block can attend all previous blocks and all tokens on the same block.
Args:
input_mask: bool[B, N] true if its part of the input, false if padding.
mask_ar: int32[B, N] mask that's 1 where previous tokens cannot depend on
it and 0 where it shares the same attention mask as the previous token.
"""
cumsum = jnp.cumsum(mask_ar, axis=1)
attn_mask = (cumsum[:, None, :] <= cumsum[:, :, None])
valid_mask = (input_mask[:, None, :] * input_mask[:, :, None])
return jnp.logical_and(attn_mask, valid_mask)
class Model(nn.Module):
"""Two towers transformer."""
img_model: str = "vit"
img: Optional[ConfigDict] = None
llm_model: str = "proj.paligemma.gemma_bv"
llm: Optional[ConfigDict] = None
def setup(self):
self._llm = importlib.import_module(
f"big_vision.models.{self.llm_model}"
).Model(**(self.llm or {}), name="llm")
img_config = {"num_classes": self._llm.embdim, **(self.img or {})}
self._img_model = importlib.import_module(
f"big_vision.models.{self.img_model}"
).Model(**img_config, name="img")
def embed_image(self, image, train=False):
out = {}
# if we have video, fold frame dimension into the batch dimension
image_shape = image.shape
if len(image_shape) == 5: # video frames
image = jnp.reshape(image, (-1, *image.shape[-3:]))
# Do we want to normalize? are they huge?
zimg, out_img = self._img_model(image, train=train)
if len(image_shape) == 5: # concatenate tokens from all video frames
zimg = jnp.reshape(zimg, (image_shape[0], -1, zimg.shape[-1]))
out["img/zimg"] = zimg
for k, v in out_img.items():
out[f"img/{k}"] = v
return zimg, out
def embed_text(self, tokens, train=False):
out = {}
ztxt = out["llm/ztxt"] = self._llm.embed_tokens(tokens, train=train)
return ztxt, out
def embed_image_and_text(self, image, text, *,
input_mask=None, mask_ar=None, train=False):
"""Concats image/text into a sequence of embeded tokens to pass to `llm`.
Args:
image: float[B, H, W, 3] image to be embedded by the `img` model and used
as prefix to the sequence passed to the `llm` model.
text: int32[B, T] token sequence to embedded by the `llm`.
input_mask: bool[B, T] true if the text token is a valid token and false
if its a token to pad the sequence. Defaults to all being input tokens.
mask_ar: int32[B, T] mask that's 1 where `text` should be attended to
causally, and 0 where it can be attended to with full self-attention.
Defaults to all text tokens being auto-regressive.
train: bool whether we're in train or test mode (dropout etc).
Returns:
Tuple (x: float[B, N, E], input_mask: bool[B, N], mask_ar: int[B, N]) and
auxiliary outputs.
"""
zimg, out_img = self.embed_image(image, train=train)
ztxt, out_txt = self.embed_text(text, train=train)
if input_mask is None:
input_mask = jnp.full(text.shape, True)
if mask_ar is None:
mask_ar = jnp.full(text.shape, 1)
# Concatenate embeded image and text into a single token sequence.
x = jnp.concatenate([zimg, ztxt], axis=1)
_, img_len, _ = zimg.shape
pad_width = ((0, 0), (img_len, 0))
mask_ar = jnp.pad(mask_ar, pad_width, constant_values=0)
input_mask = jnp.pad(input_mask, pad_width, constant_values=True)
return (x, input_mask, mask_ar), {**out_img, **out_txt}
def __call__(self, image, text, mask_ar, train=False):
"""Concats image/text and returns text logits.
Args:
image: float32[B, H, W, 3] image that can be passed to the `img` model.
text: int32[B, T] token sequence that can be embedded by the `txt` model.
mask_ar: int32[B, T] mask that's 1 where `text` should be attended to
causally, and 0 where it can be attended to with full self-attention.
train: bool whether we're in train or test mode (dropout etc).
Returns:
float32[B, T, V] logits for the `text` input, and an out-dict of named
intermediates.
"""
# Embed the image and text.
(x, input_mask, mask_ar), out = self.embed_image_and_text(
image, text, mask_ar=mask_ar, train=train)
# Call transformer on the embedded token sequence.
attn_mask = out["attn_mask"] = make_attn_mask(input_mask, mask_ar)
_, out_llm = self._llm(x, mask=attn_mask, train=train)
for k, v in out_llm.items():
out[f"llm/{k}"] = v
# Extract the logits for the text tokens.
zimg = out["img/zimg"]
text_pre_logits = out["llm/pre_logits"][:, zimg.shape[1]:, :]
text_logits = self._llm.compute_logits(text_pre_logits, train=train)
out["text_logits"] = text_logits
out["text_tokens"] = jnp.argmax(text_logits, axis=-1)
return text_logits, out
def prefill_cache(self, x, input_mask, mask_ar, *, cache_size):
"""Initializes decoding cache with `x` [B, N, E] as prompt."""
if hasattr(self._llm, "prefill_cache"):
attn_mask = make_attn_mask(input_mask, mask_ar)
return self._llm.prefill_cache(
x, input_mask, attn_mask, cache_size=cache_size)
else:
return self._fallback_prefill_cache(x, input_mask, mask_ar, cache_size)
def extend_cache(self, x):
"""Advances decoding cache with `x` [B, 1, E]."""
if hasattr(self._llm, "prefill_cache"):
return self._llm.extend_cache(x)
else:
return self._fallback_extend_cache(x)
def _fallback_prefill_cache(self, x, input_mask, mask_ar, cache_size):
# FALLBACK: only cache inputs and call the model with the full sequence
# for each and every decode step. Very slowwww...
#
# This very slow codepath does not requires the model to implement caching.
# It is intended to allow to plug any model under development quite early
# into some decoding tasks and not as a long term decoding solution.
attn_mask = make_attn_mask(input_mask, mask_ar)
logits, _ = self._llm(x, mask=attn_mask)
# Save the prefill inputs for subsequent extend_calls in the cache.
# Unused entries are zero-initialized.
pad_size = cache_size - x.shape[1]
x = jnp.pad(jnp.where(input_mask[..., None], x, 0),
[(0, 0), (0, pad_size), (0, 0)])
mask_ar = jnp.pad(jnp.where(input_mask, mask_ar, 0),
[(0, 0), (0, pad_size)])
input_mask = jnp.pad(input_mask, [(0, 0), (0, pad_size)])
self.put_variable("cache", "x_cache", x)
self.put_variable("cache", "input_mask_cache", input_mask)
self.put_variable("cache", "mask_ar_cache", mask_ar)
# Extract logits of the last token (using einsum).
last_pos = jnp.sum(input_mask, axis=1)[:, None] - 1
last_onehot = jax.nn.one_hot(last_pos, logits.shape[1], dtype=jnp.int32)
last_logits = jnp.einsum("bnh,ben->beh", logits, last_onehot)
return last_logits
def _fallback_extend_cache(self, x):
# FALLBACK: append inputs to cache and call the model with the full sequence
# for each and every decode step. Very slowwww...
assert x.shape[1] == 1
mask_ar = jnp.full(x.shape[:-1], 1)
input_mask = jnp.full(x.shape[:-1], True)
# Append inputs to cache by add/or on the next available cache position,
# which is zero-initialized.
c_x = self.get_variable("cache", "x_cache")
c_input_mask = self.get_variable("cache", "input_mask_cache")
c_mask_ar = self.get_variable("cache", "mask_ar_cache")
next_pos = jnp.sum(c_input_mask, axis=1)[:, None]
move_onehot = jax.nn.one_hot(next_pos, c_x.shape[1], dtype=jnp.int32)
x = jnp.add(c_x, jnp.einsum("beh,ben->bnh", x, move_onehot))
mask_ar = jnp.add(c_mask_ar, jnp.einsum("be,ben->bn", mask_ar, move_onehot))
input_mask = jnp.logical_or(
c_input_mask, jnp.einsum("be,ben->bn", input_mask, move_onehot))
self.put_variable("cache", "x_cache", x)
self.put_variable("cache", "input_mask_cache", input_mask)
self.put_variable("cache", "mask_ar_cache", mask_ar)
# Call model on the full cached sequence.
attn_mask = make_attn_mask(input_mask, mask_ar)
logits, _ = self._llm(x, mask=attn_mask)
# Extract logits of the last token.
last_pos = jnp.sum(input_mask, axis=1)[:, None] - 1
last_onehot = jax.nn.one_hot(last_pos, logits.shape[1], dtype=jnp.int32)
last_logits = jnp.einsum("bnh,ben->beh", logits, last_onehot)
return last_logits
# pylint: disable=line-too-long
import os
GEMMA_DIR = os.environ.get("BV_GEMMA_DIR", "PLEASE_SET_BV_GEMMA_DIR")
VANITY_NAMES = {
# Because checkpoints are behind an ACK-wall, the user has to download them
# to some folder (or bucket), take that from an environment variable.
"pt_224": os.path.join(GEMMA_DIR, "pt_224.npz"),
"pt_224.bf16": os.path.join(GEMMA_DIR, "pt_224.bf16.npz"),
"pt_224.f16": os.path.join(GEMMA_DIR, "pt_224.f16.npz"),
"pt_448": os.path.join(GEMMA_DIR, "pt_448.npz"),
"pt_448.bf16": os.path.join(GEMMA_DIR, "pt_448.bf16.npz"),
"pt_448.f16": os.path.join(GEMMA_DIR, "pt_448.f16.npz"),
"pt_896": os.path.join(GEMMA_DIR, "pt_896.npz"),
"pt_896.bf16": os.path.join(GEMMA_DIR, "pt_896.bf16.npz"),
"pt_896.f16": os.path.join(GEMMA_DIR, "pt_896.f16.npz"),
}
# pylint: enable=line-too-long
def load(init_params, init_files, model_cfg, img_load_kw={}, llm_load_kw={}): # pylint: disable=dangerous-default-value
"""Loads both pieces, `init_files` is now a dict with `img` and `llm` keys."""
# A slight shortcut when loading an already combined model:
if isinstance(init_files, str):
init_files = VANITY_NAMES.get(init_files, init_files)
init_files = {"img": f"{init_files}:img", "llm": f"{init_files}:llm"}
if not init_params: # Convenience to skip checks in colab.
init_params = {"img": None, "llm": None}
restored_params = {**init_params}
init_files = {**init_files} # Needed because ConfigDict but we'll pop stuff.
if img_init := init_files.pop("img", None):
restored_params["img"] = importlib.import_module(
f"big_vision.models.{model_cfg.get('img_model', 'vit')}"
).load(init_params["img"], img_init, model_cfg.img, **img_load_kw)
if llm_init := init_files.pop("llm", None):
restored_params["llm"] = importlib.import_module(
f"big_vision.models.{model_cfg.get('llm_model', 'proj.paligemma.gemma_bv')}"
).load(init_params["llm"], llm_init, model_cfg.llm, **llm_load_kw)
assert not init_files, (
f"There's something unused left in `config.model_init`. You probably got "
f"a typo. Here it is: {init_files}")
return restored_params