pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Distill a teacher model into a FlexiViT student.
Note this file has code that is generic enough to allow using an ensemble
of teachers. This is inherited from `proj/distill/distill.py` and the goal
to only make minimal changes in a fork of that file. However, this feature
does not really make sense for FlexiViT.
"""
# pylint: disable=consider-using-from-import
import functools
import importlib
import multiprocessing.pool
import os
from absl import app
from absl import flags
from absl import logging
import big_vision.evaluators.common as eval_common
import big_vision.evaluators.proj.distill.distance as dd
import big_vision.input_pipeline as input_pipeline
import big_vision.optax as bv_optax
import big_vision.trainers.proj.flexi.common as flexi
import big_vision.utils as u
from clu import parameter_overview
import flax
import jax
import jax.numpy as jnp
from ml_collections import config_flags
import numpy as np
import optax
import tensorflow as tf
from tensorflow.io import gfile
# pylint: disable=logging-fstring-interpolation
config_flags.DEFINE_config_file(
"config", None, "Training configuration.", lock_config=True)
flags.DEFINE_string("workdir", default=None, help="Work unit directory.")
flags.DEFINE_boolean("cleanup", default=False,
help="Delete workdir (only) after successful completion.")
# Adds jax flags to the program.
jax.config.parse_flags_with_absl()
def getfirst(d, *keys):
"""Returns the first of `keys` that's present in mapping `d`."""
result, found = None, False
for k in reversed(keys):
if k in d:
result, found = d[k], True
if found:
return result
else:
raise KeyError(f"None of {keys} is in {d.keys()}")
def main(argv):
del argv
tf.config.experimental.set_visible_devices([], "GPU")
config = flags.FLAGS.config
workdir = flags.FLAGS.workdir
logging.info(
f"\u001b[33mHello from process {jax.process_index()} holding "
f"{jax.local_device_count()}/{jax.device_count()} devices and "
f"writing to workdir {workdir}.\u001b[0m")
save_ckpt_path = None
if workdir: # Always create if requested, even if we may not write into it.
gfile.makedirs(workdir)
save_ckpt_path = os.path.join(workdir, "checkpoint.npz")
# The pool is used to perform misc operations such as logging in async way.
pool = multiprocessing.pool.ThreadPool()
# Here we register preprocessing ops from modules listed on `pp_modules`.
for m in config.get("pp_modules", ["ops_general", "ops_image", "ops_text"]):
importlib.import_module(f"big_vision.pp.{m}")
# This seed makes the Jax part of things (like model init) deterministic.
# However, full training still won't be deterministic, for example due to the
# tf.data pipeline not being deterministic even if we would set TF seed.
# See (internal link) for a fun read on what it takes.
rng = jax.random.PRNGKey(config.get("seed", 0))
# These functions do more stuff internally, for OSS release we mock them by
# trivial alternatives in order to minize disruptions in the code.
xid, wid = -1, -1
fillin = lambda s: s
def info(s, *a):
logging.info("\u001b[33mNOTE\u001b[0m: " + s, *a)
def write_note(note):
if jax.process_index() == 0:
info("%s", note)
write_note("Initializing...")
batch_size = config.input.batch_size
if batch_size % jax.device_count() != 0:
raise ValueError(f"Batch size ({batch_size}) must "
f"be divisible by device number ({jax.device_count()})")
info("Global batch size %d on %d hosts results in %d local batch size. With "
"%d dev per host (%d dev total), that's a %d per-device batch size.",
batch_size, jax.process_count(), batch_size // jax.process_count(),
jax.local_device_count(), jax.device_count(),
batch_size // jax.device_count())
# First thing after above sanity checks, so we can log "start" ticks.
mw = u.BigVisionMetricWriter(xid, wid, workdir, config)
write_note("Initializing train dataset...")
train_ds, ntrain_img = input_pipeline.training(config.input)
# Start prefetching already.
n_prefetch = config.get("prefetch_to_device", 1)
train_iter = input_pipeline.start_input_pipeline(train_ds, n_prefetch)
total_steps = u.steps("total", config, ntrain_img, batch_size)
def get_steps(name, default=ValueError, cfg=config):
return u.steps(name, cfg, ntrain_img, batch_size, total_steps, default)
u.chrono.inform(total_steps=total_steps, global_bs=batch_size,
steps_per_epoch=ntrain_img / batch_size,
measure=mw.measure, write_note=write_note)
info("Running for %d steps, that means %f epochs",
total_steps, total_steps * batch_size / ntrain_img)
# Create student and teacher models
def get_model_mod(name): # Used many times.
mod_name = config[f"{name}_name"]
return importlib.import_module(f"big_vision.models.{mod_name}")
write_note("Initializing models...")
def make_model(name):
return get_model_mod(name).Model(
num_classes=config.num_classes, **config.get(name, {}))
models = {
"student": make_model("student"),
**{t: make_model(t) for t in config.teachers}
}
# We want all parameters to be created in host RAM, not on any device, they'll
# be sent there later as needed, otherwise we already encountered two
# situations where we allocate them twice.
def get_init(model, name):
@functools.partial(jax.jit, backend="cpu")
def _init(rng):
bs = batch_size // jax.device_count()
img_size = tuple(getfirst(train_ds.element_spec, name, "image").shape[1:])
no_image = jnp.zeros((bs,) + img_size, jnp.float32)
params = flax.core.unfreeze(model.init(rng, no_image))["params"]
return params
return _init
rng, *rng_inits = jax.random.split(rng, len(models) + 1)
with u.chrono.log_timing("z/secs/init"):
params_cpu = {
name: get_init(models[name], name=name)(r)
for name, r in zip(models, rng_inits)}
if jax.process_index() == 0:
for name, params in params_cpu.items():
parameter_overview.log_parameter_overview(params, msg=f"{name} params")
mw.measure(f"num_params_{name}",
sum(p.size for p in jax.tree_leaves(params)))
write_note(f"Initializing {config.optax_name} optimizer...")
# For now, we explicitly only optimize the student parameters as there's
# nothing else to be optimized. If we ever want to add learnable projections
# or similar for good (we explored but ditched), need to refactor this a bit.
tx, sched_fns = bv_optax.make(
config, params_cpu["student"], sched_kw=dict(
total_steps=total_steps, batch_size=batch_size, data_size=ntrain_img))
# We jit this, such that the arrays are created on the CPU, not device[0].
opt_cpu = jax.jit(tx.init, backend="cpu")(params_cpu["student"])
sched_fns_cpu = [jax.jit(sched_fn, backend="cpu") for sched_fn in sched_fns]
@jax.named_call
def loss_fn(student_params, params, data, rngs, **flexi_kw):
# Note: need to extract and use `student_params` out of `params` because the
# first argument of `loss_fn` is what's differentiated wrt.
params["student"] = student_params
def fwd(name, params):
return jax.named_call(models[name].apply, name=name)(
{"params": params}, getfirst(data, name, "image"),
train=name == "student", rngs=rngs.get(name),
**(flexi_kw if name == "student" else {})
)[0] # logits, unused_outputs
logits = {name: fwd(name, w) for name, w in params.items()}
measurements = {}
for name, lg in logits.items():
measurements[f"entropy_{name}"] = -jnp.sum(
jax.nn.log_softmax(lg) * jax.nn.softmax(lg), axis=-1)
if "labels" in data:
measurements[f"task_loss_{name}"] = u.softmax_xent(
logits=lg, labels=data["labels"], reduction=False)
# NOTE: xent is linear in labels, so for KL, this is actually the same as
# using a teacher-ensemble in probs-space!
measurements["distill_loss"] = 0.0
for name in config.teachers:
l = dd.dist(logits["student"], logits[name], config.get("distance", "kl"),
**config.get("distance_kw", {}))
measurements[f"distill_loss_{name}"] = l
measurements["distill_loss"] += l
outputs = (measurements["distill_loss"], measurements)
return jax.tree_map(jnp.mean, outputs)
flexi_argnames = sorted(config.flexi)
@functools.partial(jax.pmap, axis_name="batch", donate_argnums=(0, 1),
static_broadcasted_argnums=tuple(range(4, 4 + len(flexi_argnames))))
def update_fn(params, opt, rng, data, *args):
"""Update step."""
# Mixup. Note: overwrites the `data` entries (that's intended).
if config.get("mixup") and config.mixup.p:
to_mix = {name: data[name]
for name in ("image", "labels") + tuple(models) if name in data}
rng, _, to_mix = u.mixup(rng, **config.mixup, **to_mix)
data = {**data, **to_mix}
# Get device-specific loss rng.
rng, *rng_models = jax.random.split(rng, len(models) + 1)
rngs_models_local = {
name: {"dropout": jax.random.fold_in(rngi, jax.lax.axis_index("batch"))}
for name, rngi in zip(models, rng_models)
}
w = params["student"] # Need to explicitly pull out the optimized ones.
(l, measurements), grads = jax.lax.pmean(
jax.value_and_grad(loss_fn, has_aux=True)(
w, params, data, rngs=rngs_models_local,
**dict(zip(flexi_argnames, args))),
axis_name="batch")
updates, opt = tx.update(grads, opt, w)
w = optax.apply_updates(w, updates)
params["student"] = w
# Take some logging measurements
gs = jax.tree_leaves(bv_optax.replace_frozen(config.schedule, grads, 0.))
measurements["l2_grads"] = jnp.sqrt(sum([jnp.vdot(g, g) for g in gs]))
ps = jax.tree_leaves(w)
measurements["l2_params"] = jnp.sqrt(sum([jnp.vdot(p, p) for p in ps]))
us = jax.tree_leaves(updates)
measurements["l2_updates"] = jnp.sqrt(sum([jnp.vdot(u, u) for u in us]))
return params, opt, rng, l, measurements
# We always load the teachers first, because they NEED to be initialized
# and since we don't ever modify them, we don't store them in checkpoints.
for name in config.teachers:
init_def = config[f"{name}_init"]
write_note(f"Initializing {name} from {init_def}…")
params_cpu[name] = get_model_mod(name).load(
params_cpu[name], init_def, config[name],
**config.get(f"{name}_load", {}))
# Decide how to initialize training. The order is important.
# 1. Always resumes from the existing checkpoint, e.g. resumes a finetune job.
# 2. Resume from a previous checkpoint, e.g. start a cooldown training job.
# 3. Initialize student from something, e.g. start a fine-tuning job.
# 4. Train from scratch.
resume_ckpt_path = None
if save_ckpt_path and gfile.exists(save_ckpt_path):
resume_ckpt_path = save_ckpt_path
elif config.get("resume"):
resume_ckpt_path = fillin(config.resume)
if resume_ckpt_path:
write_note("Resume training from checkpoint...")
# NOTE: we never change the teachers, so only checkpoint student here.
checkpoint = {
"params": params_cpu["student"],
"opt": opt_cpu,
"chrono": u.chrono.save(),
}
checkpoint_tree = jax.tree_structure(checkpoint)
loaded = u.load_checkpoint_np(resume_ckpt_path, checkpoint_tree)
# bfloat16 type gets lost when data is saved to disk, so we recover it.
checkpoint = jax.tree_map(u.recover_dtype, loaded)
params_cpu["student"], opt_cpu = checkpoint["params"], checkpoint["opt"]
u.chrono.load(checkpoint["chrono"])
elif config.get("student_init"):
write_note(f"Initialize student from {config.student_init}...")
params_cpu["student"] = get_model_mod("student").load(
params_cpu["student"], config.student_init, config.get("student"),
**config.get("student_load", {}))
if jax.process_index() == 0:
parameter_overview.log_parameter_overview(
params_cpu["student"], msg="restored (student) params")
write_note("Kicking off misc stuff...")
first_step = bv_optax.get_count(opt_cpu)
u.chrono.inform(first_step=first_step)
prof = None # Keeps track of start/stop of profiler state.
write_note(f"Replicating...\n{u.chrono.note}")
params_repl = flax.jax_utils.replicate(params_cpu)
opt_repl = flax.jax_utils.replicate(opt_cpu)
# Define predict functions that the evaluators can use:
def predict_fn(params, *, name, **kw):
image = kw.pop(name, kw.pop("image", None))
# Ugly API compatibility necessity:
for k in ("student", *config.teachers):
kw.pop(k, 0)
return models[name].apply({"params": params[name]}, image, **kw)
# 1. One for each variant of the student
student_pfns = flexi.mkpredictfns(
functools.partial(predict_fn, name="student"), config.flexi, "student_{x}"
)
# 2. One per teacher model
teacher_pfns = {
name: functools.partial(predict_fn, name=name)
for name in config.teachers
}
# 3. One for each (student-variant, teacher) pair, eg for distance eval.
combined_pfns = {
f"{sn}_{tn}": lambda *a, sfn=sfn, tfn=tfn, **kw: (sfn(*a, **kw), tfn(*a, **kw)) # pylint: disable=line-too-long
for sn, sfn in student_pfns.items()
for tn, tfn in teacher_pfns.items()
}
predict_fns = {**student_pfns, **teacher_pfns, **combined_pfns}
@functools.cache
def evaluators():
return eval_common.from_config(
config, predict_fns,
lambda s: write_note(f"Init evaluator: {s}…\n{u.chrono.note}"),
lambda key, cfg: get_steps(key, default=None, cfg=cfg),
)
rng, rng_loop = jax.random.split(rng, 2)
rngs_loop = flax.jax_utils.replicate(rng_loop)
ckpt_writer = None
write_note(f"First step compilations...\n{u.chrono.note}")
# Note that training can be pre-empted during the final evaluation (i.e.
# just after the final checkpoint has been written to disc), in which case we
# want to run the evals.
if first_step in (total_steps, 0):
mw.step_start(first_step)
for (name, evaluator, _, prefix) in evaluators():
if config.evals[name].get("skip_first") and first_step != total_steps:
continue
write_note(f"{name} evaluation...\n{u.chrono.note}")
with u.chrono.log_timing(f"z/secs/eval/{name}"):
for key, value in evaluator.run(params_repl):
mw.measure(f"{prefix}{key}", value)
# Using a python integer for step here, because opt.state.step is allocated
# on TPU during replication.
for step, batch in zip(range(first_step + 1, total_steps + 1), train_iter):
mw.step_start(step)
np_rng = flexi.mkrng(xid, wid, step)
flexi_args = [
flexi.choice(config.flexi[n].v, config.flexi[n].p, np_rng)
for n in flexi_argnames
]
with jax.profiler.StepTraceAnnotation("train_step", step_num=step):
with u.chrono.log_timing("z/secs/update0", noop=step > first_step + 1):
params_repl, opt_repl, rngs_loop, loss_value, measurements = update_fn(
params_repl, opt_repl, rngs_loop, batch, *flexi_args)
# On the first host, let's always profile a handful of early steps.
if jax.process_index() == 0:
prof = u.startstop_prof(prof, step, first_step, get_steps("log_training"))
# Report training progress
if (u.itstime(step, get_steps("log_training"), total_steps, host=0)
or u.chrono.warmup and jax.process_index() == 0):
for i, sched_fn_cpu in enumerate(sched_fns_cpu):
mw.measure(f"global_schedule{i if i else ''}", sched_fn_cpu(step - 1))
l = mw.measure("training_loss", loss_value[0])
for name, value in measurements.items():
mw.measure(name, value[0])
u.chrono.tick(step)
if not np.isfinite(l):
raise RuntimeError(f"The loss became nan or inf somewhere within steps "
f"[{step - get_steps('log_training')}, {step}]")
# Checkpoint saving
if (save_ckpt_path and
(u.itstime(step, get_steps("ckpt", None), total_steps, host=0) or
u.itstime(step, get_steps("keep_ckpt", None), total_steps, host=0))):
u.chrono.pause(wait_for=(params_repl["student"], opt_repl))
u.checkpointing_timeout(ckpt_writer, config.get("ckpt_timeout", 1))
# We need to transfer the weights over now or else we risk keeping them
# alive while they'll be updated in a future step, creating hard to debug
# memory errors (see (internal link)). Also, takes device 0's params only.
params_cpu["student"], opt_cpu = jax.tree_map(
lambda x: np.array(x[0]), (params_repl["student"], opt_repl))
# Check whether we want to keep a copy of the current checkpoint.
copy_step = None
if u.itstime(step, get_steps("keep_ckpt", None), total_steps):
copy_step = step
ckpt = {"params": params_cpu["student"],
"opt": opt_cpu,
"chrono": u.chrono.save()}
ckpt_writer = pool.apply_async(
u.save_checkpoint, (ckpt, save_ckpt_path, copy_step))
u.chrono.resume()
for (name, evaluator, log_steps, prefix) in evaluators():
if u.itstime(step, log_steps, total_steps, first=False, last=True):
u.chrono.pause(wait_for=params_repl)
u.chrono.tick(step) # Record things like epoch number, core hours etc.
write_note(f"{name} evaluation...\n{u.chrono.note}")
with u.chrono.log_timing(f"z/secs/eval/{name}"):
for key, value in evaluator.run(params_repl):
mw.measure(f"{prefix}{key}", value)
u.chrono.resume()
mw.step_end()
# Always give a chance to stop the profiler, no matter how things ended.
# TODO: can we also do this when dying of an exception like OOM?
if jax.process_index() == 0 and prof is not None:
u.startstop_prof(prof)
# Last note needs to happen before the pool's closed =)
write_note(f"Done!\n{u.chrono.note}")
pool.close()
pool.join()
mw.close()
# Make sure all hosts stay up until the end of main.
u.sync()
u.maybe_cleanup_workdir(workdir, flags.FLAGS.cleanup, info)
if __name__ == "__main__":
app.run(main)