|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Distill a teacher model into a FlexiViT student. |
|
|
|
Note this file has code that is generic enough to allow using an ensemble |
|
of teachers. This is inherited from `proj/distill/distill.py` and the goal |
|
to only make minimal changes in a fork of that file. However, this feature |
|
does not really make sense for FlexiViT. |
|
""" |
|
|
|
import functools |
|
import importlib |
|
import multiprocessing.pool |
|
import os |
|
|
|
from absl import app |
|
from absl import flags |
|
from absl import logging |
|
import big_vision.evaluators.common as eval_common |
|
import big_vision.evaluators.proj.distill.distance as dd |
|
import big_vision.input_pipeline as input_pipeline |
|
import big_vision.optax as bv_optax |
|
import big_vision.trainers.proj.flexi.common as flexi |
|
import big_vision.utils as u |
|
from clu import parameter_overview |
|
import flax |
|
import jax |
|
import jax.numpy as jnp |
|
from ml_collections import config_flags |
|
import numpy as np |
|
import optax |
|
import tensorflow as tf |
|
|
|
from tensorflow.io import gfile |
|
|
|
|
|
|
|
|
|
config_flags.DEFINE_config_file( |
|
"config", None, "Training configuration.", lock_config=True) |
|
|
|
flags.DEFINE_string("workdir", default=None, help="Work unit directory.") |
|
flags.DEFINE_boolean("cleanup", default=False, |
|
help="Delete workdir (only) after successful completion.") |
|
|
|
|
|
jax.config.parse_flags_with_absl() |
|
|
|
|
|
def getfirst(d, *keys): |
|
"""Returns the first of `keys` that's present in mapping `d`.""" |
|
result, found = None, False |
|
for k in reversed(keys): |
|
if k in d: |
|
result, found = d[k], True |
|
if found: |
|
return result |
|
else: |
|
raise KeyError(f"None of {keys} is in {d.keys()}") |
|
|
|
|
|
def main(argv): |
|
del argv |
|
tf.config.experimental.set_visible_devices([], "GPU") |
|
|
|
config = flags.FLAGS.config |
|
workdir = flags.FLAGS.workdir |
|
logging.info( |
|
f"\u001b[33mHello from process {jax.process_index()} holding " |
|
f"{jax.local_device_count()}/{jax.device_count()} devices and " |
|
f"writing to workdir {workdir}.\u001b[0m") |
|
|
|
save_ckpt_path = None |
|
if workdir: |
|
gfile.makedirs(workdir) |
|
save_ckpt_path = os.path.join(workdir, "checkpoint.npz") |
|
|
|
|
|
pool = multiprocessing.pool.ThreadPool() |
|
|
|
|
|
for m in config.get("pp_modules", ["ops_general", "ops_image", "ops_text"]): |
|
importlib.import_module(f"big_vision.pp.{m}") |
|
|
|
|
|
|
|
|
|
|
|
rng = jax.random.PRNGKey(config.get("seed", 0)) |
|
|
|
|
|
|
|
xid, wid = -1, -1 |
|
fillin = lambda s: s |
|
def info(s, *a): |
|
logging.info("\u001b[33mNOTE\u001b[0m: " + s, *a) |
|
def write_note(note): |
|
if jax.process_index() == 0: |
|
info("%s", note) |
|
|
|
write_note("Initializing...") |
|
|
|
batch_size = config.input.batch_size |
|
if batch_size % jax.device_count() != 0: |
|
raise ValueError(f"Batch size ({batch_size}) must " |
|
f"be divisible by device number ({jax.device_count()})") |
|
info("Global batch size %d on %d hosts results in %d local batch size. With " |
|
"%d dev per host (%d dev total), that's a %d per-device batch size.", |
|
batch_size, jax.process_count(), batch_size // jax.process_count(), |
|
jax.local_device_count(), jax.device_count(), |
|
batch_size // jax.device_count()) |
|
|
|
|
|
mw = u.BigVisionMetricWriter(xid, wid, workdir, config) |
|
|
|
write_note("Initializing train dataset...") |
|
train_ds, ntrain_img = input_pipeline.training(config.input) |
|
|
|
|
|
n_prefetch = config.get("prefetch_to_device", 1) |
|
train_iter = input_pipeline.start_input_pipeline(train_ds, n_prefetch) |
|
|
|
total_steps = u.steps("total", config, ntrain_img, batch_size) |
|
def get_steps(name, default=ValueError, cfg=config): |
|
return u.steps(name, cfg, ntrain_img, batch_size, total_steps, default) |
|
|
|
u.chrono.inform(total_steps=total_steps, global_bs=batch_size, |
|
steps_per_epoch=ntrain_img / batch_size, |
|
measure=mw.measure, write_note=write_note) |
|
|
|
info("Running for %d steps, that means %f epochs", |
|
total_steps, total_steps * batch_size / ntrain_img) |
|
|
|
|
|
def get_model_mod(name): |
|
mod_name = config[f"{name}_name"] |
|
return importlib.import_module(f"big_vision.models.{mod_name}") |
|
|
|
write_note("Initializing models...") |
|
def make_model(name): |
|
return get_model_mod(name).Model( |
|
num_classes=config.num_classes, **config.get(name, {})) |
|
|
|
models = { |
|
"student": make_model("student"), |
|
**{t: make_model(t) for t in config.teachers} |
|
} |
|
|
|
|
|
|
|
|
|
def get_init(model, name): |
|
@functools.partial(jax.jit, backend="cpu") |
|
def _init(rng): |
|
bs = batch_size // jax.device_count() |
|
img_size = tuple(getfirst(train_ds.element_spec, name, "image").shape[1:]) |
|
no_image = jnp.zeros((bs,) + img_size, jnp.float32) |
|
params = flax.core.unfreeze(model.init(rng, no_image))["params"] |
|
return params |
|
return _init |
|
|
|
rng, *rng_inits = jax.random.split(rng, len(models) + 1) |
|
with u.chrono.log_timing("z/secs/init"): |
|
params_cpu = { |
|
name: get_init(models[name], name=name)(r) |
|
for name, r in zip(models, rng_inits)} |
|
|
|
if jax.process_index() == 0: |
|
for name, params in params_cpu.items(): |
|
parameter_overview.log_parameter_overview(params, msg=f"{name} params") |
|
mw.measure(f"num_params_{name}", |
|
sum(p.size for p in jax.tree_leaves(params))) |
|
|
|
write_note(f"Initializing {config.optax_name} optimizer...") |
|
|
|
|
|
|
|
tx, sched_fns = bv_optax.make( |
|
config, params_cpu["student"], sched_kw=dict( |
|
total_steps=total_steps, batch_size=batch_size, data_size=ntrain_img)) |
|
|
|
|
|
opt_cpu = jax.jit(tx.init, backend="cpu")(params_cpu["student"]) |
|
sched_fns_cpu = [jax.jit(sched_fn, backend="cpu") for sched_fn in sched_fns] |
|
|
|
@jax.named_call |
|
def loss_fn(student_params, params, data, rngs, **flexi_kw): |
|
|
|
|
|
params["student"] = student_params |
|
|
|
def fwd(name, params): |
|
return jax.named_call(models[name].apply, name=name)( |
|
{"params": params}, getfirst(data, name, "image"), |
|
train=name == "student", rngs=rngs.get(name), |
|
**(flexi_kw if name == "student" else {}) |
|
)[0] |
|
logits = {name: fwd(name, w) for name, w in params.items()} |
|
|
|
measurements = {} |
|
for name, lg in logits.items(): |
|
measurements[f"entropy_{name}"] = -jnp.sum( |
|
jax.nn.log_softmax(lg) * jax.nn.softmax(lg), axis=-1) |
|
if "labels" in data: |
|
measurements[f"task_loss_{name}"] = u.softmax_xent( |
|
logits=lg, labels=data["labels"], reduction=False) |
|
|
|
|
|
|
|
measurements["distill_loss"] = 0.0 |
|
for name in config.teachers: |
|
l = dd.dist(logits["student"], logits[name], config.get("distance", "kl"), |
|
**config.get("distance_kw", {})) |
|
measurements[f"distill_loss_{name}"] = l |
|
measurements["distill_loss"] += l |
|
|
|
outputs = (measurements["distill_loss"], measurements) |
|
return jax.tree_map(jnp.mean, outputs) |
|
|
|
flexi_argnames = sorted(config.flexi) |
|
|
|
@functools.partial(jax.pmap, axis_name="batch", donate_argnums=(0, 1), |
|
static_broadcasted_argnums=tuple(range(4, 4 + len(flexi_argnames)))) |
|
def update_fn(params, opt, rng, data, *args): |
|
"""Update step.""" |
|
|
|
|
|
if config.get("mixup") and config.mixup.p: |
|
to_mix = {name: data[name] |
|
for name in ("image", "labels") + tuple(models) if name in data} |
|
rng, _, to_mix = u.mixup(rng, **config.mixup, **to_mix) |
|
data = {**data, **to_mix} |
|
|
|
|
|
rng, *rng_models = jax.random.split(rng, len(models) + 1) |
|
rngs_models_local = { |
|
name: {"dropout": jax.random.fold_in(rngi, jax.lax.axis_index("batch"))} |
|
for name, rngi in zip(models, rng_models) |
|
} |
|
|
|
w = params["student"] |
|
(l, measurements), grads = jax.lax.pmean( |
|
jax.value_and_grad(loss_fn, has_aux=True)( |
|
w, params, data, rngs=rngs_models_local, |
|
**dict(zip(flexi_argnames, args))), |
|
axis_name="batch") |
|
updates, opt = tx.update(grads, opt, w) |
|
w = optax.apply_updates(w, updates) |
|
params["student"] = w |
|
|
|
|
|
gs = jax.tree_leaves(bv_optax.replace_frozen(config.schedule, grads, 0.)) |
|
measurements["l2_grads"] = jnp.sqrt(sum([jnp.vdot(g, g) for g in gs])) |
|
ps = jax.tree_leaves(w) |
|
measurements["l2_params"] = jnp.sqrt(sum([jnp.vdot(p, p) for p in ps])) |
|
us = jax.tree_leaves(updates) |
|
measurements["l2_updates"] = jnp.sqrt(sum([jnp.vdot(u, u) for u in us])) |
|
|
|
return params, opt, rng, l, measurements |
|
|
|
|
|
|
|
for name in config.teachers: |
|
init_def = config[f"{name}_init"] |
|
write_note(f"Initializing {name} from {init_def}…") |
|
params_cpu[name] = get_model_mod(name).load( |
|
params_cpu[name], init_def, config[name], |
|
**config.get(f"{name}_load", {})) |
|
|
|
|
|
|
|
|
|
|
|
|
|
resume_ckpt_path = None |
|
if save_ckpt_path and gfile.exists(save_ckpt_path): |
|
resume_ckpt_path = save_ckpt_path |
|
elif config.get("resume"): |
|
resume_ckpt_path = fillin(config.resume) |
|
if resume_ckpt_path: |
|
write_note("Resume training from checkpoint...") |
|
|
|
checkpoint = { |
|
"params": params_cpu["student"], |
|
"opt": opt_cpu, |
|
"chrono": u.chrono.save(), |
|
} |
|
checkpoint_tree = jax.tree_structure(checkpoint) |
|
loaded = u.load_checkpoint_np(resume_ckpt_path, checkpoint_tree) |
|
|
|
checkpoint = jax.tree_map(u.recover_dtype, loaded) |
|
params_cpu["student"], opt_cpu = checkpoint["params"], checkpoint["opt"] |
|
u.chrono.load(checkpoint["chrono"]) |
|
elif config.get("student_init"): |
|
write_note(f"Initialize student from {config.student_init}...") |
|
params_cpu["student"] = get_model_mod("student").load( |
|
params_cpu["student"], config.student_init, config.get("student"), |
|
**config.get("student_load", {})) |
|
if jax.process_index() == 0: |
|
parameter_overview.log_parameter_overview( |
|
params_cpu["student"], msg="restored (student) params") |
|
|
|
write_note("Kicking off misc stuff...") |
|
first_step = bv_optax.get_count(opt_cpu) |
|
u.chrono.inform(first_step=first_step) |
|
prof = None |
|
|
|
write_note(f"Replicating...\n{u.chrono.note}") |
|
params_repl = flax.jax_utils.replicate(params_cpu) |
|
opt_repl = flax.jax_utils.replicate(opt_cpu) |
|
|
|
|
|
def predict_fn(params, *, name, **kw): |
|
image = kw.pop(name, kw.pop("image", None)) |
|
|
|
for k in ("student", *config.teachers): |
|
kw.pop(k, 0) |
|
return models[name].apply({"params": params[name]}, image, **kw) |
|
|
|
|
|
student_pfns = flexi.mkpredictfns( |
|
functools.partial(predict_fn, name="student"), config.flexi, "student_{x}" |
|
) |
|
|
|
teacher_pfns = { |
|
name: functools.partial(predict_fn, name=name) |
|
for name in config.teachers |
|
} |
|
|
|
combined_pfns = { |
|
f"{sn}_{tn}": lambda *a, sfn=sfn, tfn=tfn, **kw: (sfn(*a, **kw), tfn(*a, **kw)) |
|
for sn, sfn in student_pfns.items() |
|
for tn, tfn in teacher_pfns.items() |
|
} |
|
|
|
predict_fns = {**student_pfns, **teacher_pfns, **combined_pfns} |
|
|
|
@functools.cache |
|
def evaluators(): |
|
return eval_common.from_config( |
|
config, predict_fns, |
|
lambda s: write_note(f"Init evaluator: {s}…\n{u.chrono.note}"), |
|
lambda key, cfg: get_steps(key, default=None, cfg=cfg), |
|
) |
|
|
|
rng, rng_loop = jax.random.split(rng, 2) |
|
rngs_loop = flax.jax_utils.replicate(rng_loop) |
|
ckpt_writer = None |
|
|
|
write_note(f"First step compilations...\n{u.chrono.note}") |
|
|
|
|
|
|
|
|
|
if first_step in (total_steps, 0): |
|
mw.step_start(first_step) |
|
for (name, evaluator, _, prefix) in evaluators(): |
|
if config.evals[name].get("skip_first") and first_step != total_steps: |
|
continue |
|
write_note(f"{name} evaluation...\n{u.chrono.note}") |
|
with u.chrono.log_timing(f"z/secs/eval/{name}"): |
|
for key, value in evaluator.run(params_repl): |
|
mw.measure(f"{prefix}{key}", value) |
|
|
|
|
|
|
|
for step, batch in zip(range(first_step + 1, total_steps + 1), train_iter): |
|
mw.step_start(step) |
|
|
|
np_rng = flexi.mkrng(xid, wid, step) |
|
flexi_args = [ |
|
flexi.choice(config.flexi[n].v, config.flexi[n].p, np_rng) |
|
for n in flexi_argnames |
|
] |
|
|
|
with jax.profiler.StepTraceAnnotation("train_step", step_num=step): |
|
with u.chrono.log_timing("z/secs/update0", noop=step > first_step + 1): |
|
params_repl, opt_repl, rngs_loop, loss_value, measurements = update_fn( |
|
params_repl, opt_repl, rngs_loop, batch, *flexi_args) |
|
|
|
|
|
if jax.process_index() == 0: |
|
prof = u.startstop_prof(prof, step, first_step, get_steps("log_training")) |
|
|
|
|
|
if (u.itstime(step, get_steps("log_training"), total_steps, host=0) |
|
or u.chrono.warmup and jax.process_index() == 0): |
|
for i, sched_fn_cpu in enumerate(sched_fns_cpu): |
|
mw.measure(f"global_schedule{i if i else ''}", sched_fn_cpu(step - 1)) |
|
l = mw.measure("training_loss", loss_value[0]) |
|
for name, value in measurements.items(): |
|
mw.measure(name, value[0]) |
|
u.chrono.tick(step) |
|
if not np.isfinite(l): |
|
raise RuntimeError(f"The loss became nan or inf somewhere within steps " |
|
f"[{step - get_steps('log_training')}, {step}]") |
|
|
|
|
|
if (save_ckpt_path and |
|
(u.itstime(step, get_steps("ckpt", None), total_steps, host=0) or |
|
u.itstime(step, get_steps("keep_ckpt", None), total_steps, host=0))): |
|
u.chrono.pause(wait_for=(params_repl["student"], opt_repl)) |
|
u.checkpointing_timeout(ckpt_writer, config.get("ckpt_timeout", 1)) |
|
|
|
|
|
|
|
params_cpu["student"], opt_cpu = jax.tree_map( |
|
lambda x: np.array(x[0]), (params_repl["student"], opt_repl)) |
|
|
|
|
|
copy_step = None |
|
if u.itstime(step, get_steps("keep_ckpt", None), total_steps): |
|
copy_step = step |
|
|
|
ckpt = {"params": params_cpu["student"], |
|
"opt": opt_cpu, |
|
"chrono": u.chrono.save()} |
|
ckpt_writer = pool.apply_async( |
|
u.save_checkpoint, (ckpt, save_ckpt_path, copy_step)) |
|
u.chrono.resume() |
|
|
|
for (name, evaluator, log_steps, prefix) in evaluators(): |
|
if u.itstime(step, log_steps, total_steps, first=False, last=True): |
|
u.chrono.pause(wait_for=params_repl) |
|
u.chrono.tick(step) |
|
write_note(f"{name} evaluation...\n{u.chrono.note}") |
|
with u.chrono.log_timing(f"z/secs/eval/{name}"): |
|
for key, value in evaluator.run(params_repl): |
|
mw.measure(f"{prefix}{key}", value) |
|
u.chrono.resume() |
|
mw.step_end() |
|
|
|
|
|
|
|
if jax.process_index() == 0 and prof is not None: |
|
u.startstop_prof(prof) |
|
|
|
|
|
write_note(f"Done!\n{u.chrono.note}") |
|
|
|
pool.close() |
|
pool.join() |
|
mw.close() |
|
|
|
|
|
u.sync() |
|
|
|
u.maybe_cleanup_workdir(workdir, flags.FLAGS.cleanup, info) |
|
|
|
|
|
if __name__ == "__main__": |
|
app.run(main) |
|
|