pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inputs, outputs and losses for depth prediction task."""
import big_vision.utils as u
import einops
import jax
import jax.numpy as jnp
import numpy as np
ONE_HOT_AXIS = -2
def input_pp(batch, config):
"""Makes inputs for depth prediction task."""
if "labels" not in batch:
x = None
else:
hp, wp = config.model.patch_size
depth = batch["labels"][..., 0]
# Discretize to [0, ..., bins - 1].
nbins = config.model.inputs.depth[ONE_HOT_AXIS]
mind = config.min_depth
maxd = config.max_depth
depth = (depth - mind) / (maxd - mind)
depth *= nbins
depth = jnp.floor(depth).astype(jnp.int32)
depth = jnp.minimum(depth, nbins - 1)
depth = jnp.maximum(depth, 0)
# Converts labels from (B, H, W, c) to (B, num_patches, c, patch_size).
depth = jax.nn.one_hot(
einops.rearrange(
depth, "b (hn hp) (wn wp) -> b (hn wn) (hp wp)", hp=hp, wp=wp),
num_classes=config.model.inputs.depth[ONE_HOT_AXIS],
axis=ONE_HOT_AXIS)
x = {"depth": depth}
ctx = batch.get("image_ctx", batch.get("image", None))
return {"ctx": ctx, "x": x}
def loss_fn(predictions, batch, config):
"""Computes loss for depth prediction task."""
labels = input_pp(batch, config)["x"]
losses = {}
loss = u.softmax_xent(
logits=predictions["depth"], labels=labels["depth"], reduction=False,
axis=ONE_HOT_AXIS)
# Do not train on the closest class; usually regions of the image with
# depth==0, which is the default for regions with no depth signal.
# TODO: Encode depth==0 as class==-1.
mask = jnp.argmax(labels["depth"], ONE_HOT_AXIS) != 0
loss = loss * mask
losses["loss_depth"] = loss
return sum(losses.values()), losses
def predict_outputs(predictions, config):
"""Makes outputs for depth predictin tasks."""
# Maps predictions to (height, width, channels).
hp, wp = config.model.patch_size
hn, wn = np.array(config.model.input_size) // np.array((hp, wp))
depth = einops.rearrange(
predictions["depth"],
"b (hn wn) c (hp wp) -> b (hn hp) (wn wp) c",
hn=hn, wn=wn, hp=hp, wp=wp)
depth = jnp.argmax(depth, axis=-1) # [B, H, W]
# Revert discretization.
nbins = config.model.inputs.depth[ONE_HOT_AXIS]
mind = config.min_depth
maxd = config.max_depth
depth = depth.astype(jnp.float32) + 0.5 # Undoes floor in expectation.
depth /= nbins
depth = depth * (maxd - mind) + mind
return {"depth": depth}