# Copyright 2024 Big Vision Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long r"""Train a GIVT encoder-decoder model for NYU depth prediction.""" import itertools import big_vision.configs.common as bvcc import ml_collections ConfigDict = ml_collections.ConfigDict VTT_MODELS = { 'base': dict(num_layers=12, num_decoder_layers=12, num_heads=12, mlp_dim=3072, emb_dim=768), 'large': dict(num_layers=24, num_decoder_layers=24, num_heads=16, mlp_dim=4096, emb_dim=1024), } RES = 512 PATCH_SIZE = 16 LABEL_RES = 512 LABEL_PATCH_SIZE = 16 QUANTIZATION_BINS = 256 MIN_DEPTH = 0.001 MAX_DEPTH = 10.0 def get_config(arg='split=sweep'): """Config for training.""" arg = bvcc.parse_arg(arg, split='sweep', runlocal=False, singlehost=False) config = ConfigDict() config.input = {} config.input.pp = ( f'decode|nyu_depth|' f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|' f'inception_box|crop_box(key="image")|crop_box(key="labels")|' f'resize({RES})|' f'resize({LABEL_RES},key="labels",method="nearest")|' f'bin_nyu_depth(min_depth={MIN_DEPTH}, max_depth={MAX_DEPTH}, num_bins={QUANTIZATION_BINS})|' f'value_range(-1,1)|' f'copy("image", "cond_image")|copy("labels", "image")|' f'keep("image", "cond_image")' ) pp_eval = ( f'decode|nyu_depth|' f'nyu_eval_crop|' f'resize({RES})|' f'resize({LABEL_RES},key="labels",method="nearest")|' f'bin_nyu_depth(min_depth={MIN_DEPTH}, max_depth={MAX_DEPTH}, num_bins={QUANTIZATION_BINS})|' f'value_range(-1,1)|' f'copy("image", "cond_image")|copy("labels", "image")|' f'keep("image", "cond_image")' ) pp_predict = ( f'decode|nyu_depth|' f'nyu_eval_crop|copy("labels","ground_truth")|' f'resize({RES})|' f'value_range(-1,1)|' f'copy("image", "cond_image")|' f'strong_hash(inkey="tfds_id", outkey="image/id")|' f'keep("cond_image", "ground_truth", "image/id")' ) config.input.data = dict(name='nyu_depth_v2', split='train') config.input.batch_size = 512 config.input.shuffle_buffer_size = 50_000 config.total_epochs = 50 config.log_training_steps = 50 config.ckpt_steps = 1000 config.keep_ckpt_steps = None config.prefetch_to_device = 2 config.seed = 0 # Optimizer section config.optax_name = 'big_vision.scale_by_adafactor' config.optax = dict(beta2_cap=0.95) config.ar_generation_config = ConfigDict() config.ar_generation_config.temp = 0.9 config.ar_generation_config.temp_probs = 1.0 config.ar_generation_config.beam_size = 2 config.ar_generation_config.fan_size = 8 config.ar_generation_config.rand_top_k = False config.ar_generation_config.rand_top_k_temp = 1.0 config.lr = 0.001 config.wd = 0.000001 config.lr_mults = [ ('pos_embedding_encoder.*', 0.1), ('EmbedPatches.*', 0.1), ('encoder.*', 0.1), ('decoder.*', 1.0) ] config.schedule = dict(decay_type='cosine', warmup_percent=0.1) # Oracle section config.min_depth = MIN_DEPTH config.max_depth = MAX_DEPTH config.vae = ConfigDict() config.vae.model_name = 'proj.givt.vit' config.vae.model = ConfigDict() config.vae.model.input_size = (RES, RES) config.vae.model.patch_size = (PATCH_SIZE, PATCH_SIZE) config.vae.model.code_len = 256 config.vae.model.width = 768 config.vae.model.enc_depth = 6 config.vae.model.dec_depth = 12 config.vae.model.mlp_dim = 3072 config.vae.model.num_heads = 12 config.vae.model.codeword_dim = 16 config.vae.model.code_dropout = 'none' config.vae.model.bottleneck_resize = True # values: (channel index in source image, number of classes) config.vae.model.inout_specs = { 'depth': (0, QUANTIZATION_BINS), } config.vae.model_init = 'gs://big_vision/givt/vae_nyu_depth_params.npz' # Model section config.model_name = 'proj.givt.givt' # # Base model (for exploration) # config.model_init = {'encoder': 'howto-i21k-B/16'} # config.model = ConfigDict(VTT_MODELS['base']) # Large model config.model_init = {'encoder': 'howto-i21k-L/16'} config.model_load = dict(dont_load=('cls', 'head/bias', 'head/kernel')) config.model = ConfigDict(VTT_MODELS['large']) config.model.patches = (PATCH_SIZE, PATCH_SIZE) config.model.input_size = (RES, RES) config.model.posemb_type = 'learn' config.model.seq_len = config.vae.model.code_len config.model.num_labels = None config.model.num_mixtures = 1 config.model.fix_square_plus = True config.model.out_dim = config.vae.model.codeword_dim config.model.scale_tol = 1e-6 config.model.dec_dropout_rate = 0.0 # Evaluation section config.evals = {} config.evals.val = ConfigDict() config.evals.val.type = 'mean' config.evals.val.pred = 'validation' config.evals.val.data = {**config.input.data} config.evals.val.data.split = 'validation' config.evals.val.pp_fn = pp_eval config.evals.val.log_steps = 250 base = { 'type': 'proj.givt.nyu_depth', 'data': {**config.input.data}, 'pp_fn': pp_predict, 'pred': 'sample_depth', 'log_steps': 2000, 'min_depth': MIN_DEPTH, 'max_depth': MAX_DEPTH, } config.evals.nyu_depth_val = dict(base) config.evals.nyu_depth_val.data.split = 'validation' config.evals.save_pred = dict(base) config.evals.save_pred.type = 'proj.givt.save_predictions' del config.evals.save_pred.min_depth, config.evals.save_pred.max_depth config.evals.save_pred.log_steps = 100_000 config.evals.save_pred.data.split = 'validation[:128]' config.evals.save_pred.outfile = 'inference.npz' config.eval_only = False config.seed = 0 if arg.runlocal: config.input.batch_size = 4 config.input.shuffle_buffer_size = 10 config.evals.val.log_steps = 20 config.evals.val.data.split = 'validation[:4]' config.evals.nyu_depth_val.data.split = 'validation[:4]' config.evals.save_pred.data.split = 'validation[:4]' config.model.update(VTT_MODELS['base']) del config.model_init for k in config.evals.keys(): if k not in ['val', 'nyu_depth_val', 'save_pred']: del config.evals[k] return config