# Copyright 2024 Big Vision Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long r"""Generates XM3600 in a TFDS-ready structure. First, download the captions from https://google.github.io/crossmodal-3600/ and the images from https://cocodataset.org/#download. The coco Karpathy split is available at http://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip: mkdir -p /tmp/data/xm3600 wget https://google.github.io/crossmodal-3600/web-data/captions.zip -P /tmp/data/xm3600 unzip /tmp/data/xm3600/captions.zip -d /tmp/data/xm3600/ wget https://open-images-dataset.s3.amazonaws.com/crossmodal-3600/images.tgz ta-P /tmp/data/xm3600 mkdir /tmp/data/xm3600/images tar -xzf /tmp/data/xm3600/images.tgz -C /tmp/data/xm3600/images Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util): cd big_vision/datasets env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=xm3600 Example to load: import tensorflow_datasets as tfds dataset = tfds.load( 'xm3600', split='en', data_dir='/tmp/tfds') """ import json import os.path import tensorflow_datasets as tfds _DESCRIPTION = """ COCO image + captions, translated from English to 35 languages (English incl.). """ # pylint: disable=line-too-long _CITATION = """ @inproceedings{thapliyal-etal-2022-crossmodal, title = "Crossmodal-3600: A Massively Multilingual Multimodal Evaluation Dataset", author = "Thapliyal, Ashish V. and Pont Tuset, Jordi and Chen, Xi and Soricut, Radu", editor = "Goldberg, Yoav and Kozareva, Zornitsa and Zhang, Yue", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.emnlp-main.45", doi = "10.18653/v1/2022.emnlp-main.45", pages = "715--729", } """ # pylint: enable=line-too-long _CAPTIONS_PATH = '/tmp/data/xm3600' _IMAGES_PATH = '/tmp/data/xm3600/images' XM3600_LANGUAGES = [ 'ar', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fi', 'fil', 'fr', 'he', 'hi', 'hr', 'hu', 'id', 'it', 'ja', 'ko', 'mi', 'nl', 'no', 'pl', 'pt', 'quz', 'ro', 'ru', 'sv', 'sw', 'te', 'th', 'tr', 'uk', 'vi', 'zh' ] class Xm3600(tfds.core.GeneratorBasedBuilder): """DatasetBuilder for XM3600 dataset.""" VERSION = tfds.core.Version('1.0.1') RELEASE_NOTES = { '1.0.0': 'First release.', '1.0.1': 'Add captions/tokenized feature to compute metrics (eg CIDEr).', } def _info(self): """Returns the metadata.""" return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict({ 'image/id': tfds.features.Text(), 'image': tfds.features.Image(encoding_format='jpeg'), 'captions': tfds.features.Sequence(tfds.features.Text()), 'captions/tokenized': tfds.features.Sequence(tfds.features.Text()), 'language': tfds.features.Text(), }), supervised_keys=None, homepage='https://google.github.io/crossmodal-3600/', citation=_CITATION, ) def _split_generators(self, dl_manager: tfds.download.DownloadManager): """Returns SplitGenerators.""" return {lang: self._generate_examples(lang) for lang in XM3600_LANGUAGES} def _generate_examples(self, split: str): """Yields (key, example) tuples from dataset.""" language = split annot_fname = os.path.join(_CAPTIONS_PATH, 'captions.jsonl') data = {} tok_data = {} with open(annot_fname, 'r') as f: for line in f: j = json.loads(line) image_id = f'{j["image/key"]}_{language}' captions = j[language]['caption'] data[image_id] = captions tok_data[image_id] = j[language]['caption/tokenized'] for image_id, captions in data.items(): yield image_id, { 'image/id': image_id, 'image': os.path.join(_IMAGES_PATH, f'{image_id.split("_")[0]}.jpg'), 'captions': captions, 'captions/tokenized': tok_data[image_id], 'language': language, }