# Copyright 2022 Big Vision Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluator to save predictions.""" # pylint: disable=consider-using-from-import import os from absl import flags from absl import logging import big_vision.evaluators.proj.uvim.common as common import big_vision.pp.builder as pp_builder import big_vision.utils as u import jax import numpy as np import tensorflow as tf class Evaluator: """Save predictions in "{FLAGS.workdir}/{outfile}". Results can then be easily inspected in a notebook such as: ``` results = utils.load_checkpoint(None, "") inputs, outputs = (results["inputs"], results["outputs"]) ``` """ def __init__(self, predict_fn, pp_fn, dataset, split, batch_size, outfile, predict_kwargs=None, dataset_dir=None): # Prepare to run predict on all processes and gather predictions on all # devices. Note: if needed consider only gather across processes. def predict(params, batch): y = predict_fn(params, batch['inputs'], **(predict_kwargs or {})) res = {'inputs': batch['inputs'], 'outputs': y, 'mask': batch['mask']} return jax.lax.all_gather(res, axis_name='data', axis=0, tiled=True) self.predict_fn = jax.pmap(predict, axis_name='data') # Prepare data for each process and pad with zeros so all processes have the # same number of batches. def preprocess(example): return { 'mask': tf.constant(1), 'inputs': pp_builder.get_preprocess_fn(pp_fn)(example), } self.data = common.get_jax_process_dataset( dataset=dataset, split=split, dataset_dir=dataset_dir, global_batch_size=batch_size, pp_fn=preprocess) self.path = os.path.join(flags.FLAGS.workdir, outfile) def run(self, params): """Compute all predictions, gather in main host and save in outfile.""" count = 0 outputs = [] for batch in self.data.as_numpy_iterator(): out = self.predict_fn(params, batch) if jax.process_index(): continue out = jax.device_get(jax.tree_map(lambda x: x[0], out)) out = jax.tree_map(lambda x: x[out['mask'] == 1], out) # pylint: disable=cell-var-from-loop count += out['mask'].shape[0] out.pop('mask') outputs.append(out) logging.log_every_n_seconds( logging.INFO, 'Save predictions: processed %i examples so far.', 30, count) if jax.process_index(): return logging.info('Save predictions: processed %d examples.', count) # Actually save in filesystem. outputs = jax.tree_map(lambda *x: np.concatenate(x, axis=0), *outputs) u.save_checkpoint(outputs, self.path, compressed=True) return yield None # pylint: disable=unreachable