# Copyright 2024 Big Vision Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluator that save inputs and outputs of prediction functions.""" import functools from absl import flags from absl import logging from big_vision import input_pipeline from big_vision import optax as bv_optax from big_vision import utils from big_vision.datasets import core as ds_core from big_vision.pp import builder as pp_builder import jax import numpy as np # Temporary global flag to facilitate backwards compatability. Will be removed # by the end of year 2023. API = 'jit' # Note: global to avoid jax re-compiling across different evaluator instances. def _run_predict_fn(predict_fn, train_state, batch): """Run predict_fn and gather all outputs on all devices.""" y = predict_fn(train_state, batch) return {'inputs': batch, 'outputs': y} class Evaluator: """Evaluator that saves the inputs and outputs of a prediction function. Example configuration: ``` config.evals.save_pred = { 'type': 'save', 'pred': 'inference', 'outfile': '{workdir}/inference-{step:09d}.npz', 'data': ..., 'pp_fn': ..., 'log_steps': ..., } ``` Results can then be easily inspected in a notebook such as: ``` results = utils.load_checkpoint("") inputs, outputs = (results["inputs"], results["outputs"]) ``` """ def __init__(self, predict_fn, data, pp_fn, batch_size, outfile, cache_final=True, cache_raw=False, prefetch=1, *, devices): replicate = jax.sharding.NamedSharding( jax.sharding.Mesh(devices, ('devices',)), jax.sharding.PartitionSpec() ) self.predict_fn = functools.partial( jax.jit(_run_predict_fn, static_argnums=0, out_shardings=replicate), predict_fn, ) data = ds_core.get(**data) self.dataset, self.steps = input_pipeline.make_for_inference( data.get_tfdata(ordered=True), batch_size=batch_size, num_ex_per_process=data.num_examples_per_process(), preprocess_fn=pp_builder.get_preprocess_fn(pp_fn), cache_final=cache_final, cache_raw=cache_raw, ) self.data_iter = input_pipeline.start_global( self.dataset, devices, prefetch ) self.outfile = outfile def run(self, train_state): """Compute all predictions, gather in main host and save in outfile.""" step = jax.device_get(bv_optax.get_count(train_state['opt'], jittable=True)) outfile = self.outfile.format(workdir=flags.FLAGS.workdir, step=step) count = 0 outputs = [] for _, batch in zip(range(self.steps), self.data_iter): out = self.predict_fn(train_state, batch) if jax.process_index(): continue out = jax.device_get(out) mask = out['inputs']['_mask'] out = jax.tree.map(lambda x: x[mask == 1], out) # pylint: disable=cell-var-from-loop count += mask.shape[0] out['inputs'].pop('_mask') outputs.append(out) logging.log_every_n_seconds( logging.INFO, 'Processed %i examples so far.', 60, count) if jax.process_index(): return logging.info('Saving %d examples in %s', count, outfile) outputs = jax.tree.map(lambda *x: np.concatenate(x, axis=0), *outputs) utils.save_checkpoint(outputs, outfile, compressed=True) return yield None # pylint: disable=unreachable