# Copyright 2024 Big Vision Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A version of ViT with flexible seqlen ((internal link)).""" from typing import Optional, Sequence from absl import logging from big_vision import utils from big_vision.models import common from big_vision.models import vit import flax.linen as nn import jax import jax.numpy as jnp import numpy as np import tensorflow as tf def resample_patchemb(old, new_hw): """Resample the weights of the patch embedding kernel to target resolution. We resample the patch embedding kernel by approximately inverting the effect of patch resizing. Colab with detailed explanation: (internal link) With this resizing, we can for example load a B/8 filter into a B/16 model and, on 2x larger input image, the result will match. See (internal link) Args: old: original parameter to be resized. new_hw: target shape (height, width)-only. Returns: Resized patch embedding kernel. """ assert len(old.shape) == 4, "Four dimensions expected" assert len(new_hw) == 2, "New shape should only be hw" if tuple(old.shape[:2]) == tuple(new_hw): return old logging.info("FlexiViT: resize embedding %s to %s", old.shape, new_hw) def resize(x_np, new_shape): x_tf = tf.constant(x_np)[None, ..., None] # NOTE: we are using tf.image.resize here to match the resize operations in # the data preprocessing pipeline. x_upsampled = tf.image.resize( x_tf, new_shape, method="bilinear")[0, ..., 0].numpy() return x_upsampled def get_resize_mat(old_shape, new_shape): mat = [] for i in range(np.prod(old_shape)): basis_vec = np.zeros(old_shape) basis_vec[np.unravel_index(i, old_shape)] = 1. mat.append(resize(basis_vec, new_shape).reshape(-1)) return np.stack(mat).T resize_mat = get_resize_mat(old.shape[:2], new_hw) resize_mat_pinv = np.linalg.pinv(resize_mat.T) def resample_kernel(kernel): resampled_kernel = resize_mat_pinv @ kernel.reshape(-1) return resampled_kernel.reshape(new_hw) v_resample_kernel = jax.vmap(jax.vmap(resample_kernel, 2, 2), 3, 3) return v_resample_kernel(old) class Patchify(nn.Module): """As a class just to match param names with original ViT.""" patch_size: Sequence[int] = (32, 32) width: int = 768 seqhw: Optional[int] = None @nn.compact def __call__(self, image, seqhw=None): n, h, w, c = image.shape # pylint: disable=unused-variable w_emb = self.param( "kernel", nn.initializers.normal(stddev=1/np.sqrt(self.width)), (*self.patch_size, c, self.width), image.dtype) b_emb = self.param("bias", nn.initializers.zeros, self.width, image.dtype) # Compute required patch-size to reach `seqhw` given `image` size. seqhw = seqhw or self.seqhw if seqhw is None and self.is_initializing(): patch_size = self.patch_size else: patch_size = tuple(np.array((h, w)) // np.array((seqhw, seqhw))) if patch_size != self.patch_size: w_emb = resample_patchemb(old=w_emb, new_hw=patch_size) x = jax.lax.conv_general_dilated( image, w_emb, window_strides=patch_size, padding="VALID", dimension_numbers=("NHWC", "HWIO", "NHWC")) return x + b_emb class _Model(nn.Module): """ViT model.""" num_classes: int patch_size: Sequence[int] = (32, 32) posemb_size: Sequence[int] = (7, 7) width: int = 768 depth: int = 12 mlp_dim: Optional[int] = None # Defaults to 4x input dim num_heads: int = 12 posemb: str = "learn" # Can also be "sincos2d" pool_type: str = "gap" # Can also be "map" or "tok" head_zeroinit: bool = True seqhw: Optional[int] = None @nn.compact def __call__(self, image, *, seqhw=None, train=False): out = {} x = out["stem"] = Patchify( self.patch_size, self.width, self.seqhw, name="embedding")(image, seqhw) # == Flattening + posemb n, h, w, c = x.shape x = jnp.reshape(x, [n, h * w, c]) pos_emb = vit.get_posemb( self, self.posemb, self.posemb_size, c, "pos_embedding", x.dtype) if pos_emb.shape[1] != h * w: pos_emb = jnp.reshape(pos_emb, (1, *self.posemb_size, c)) pos_emb = jax.image.resize(pos_emb, (1, h, w, c), "linear") pos_emb = jnp.reshape(pos_emb, (1, h * w, c)) x = out["with_posemb"] = x + pos_emb # == Optional [cls] token if self.pool_type == "tok": cls = self.param("cls", nn.initializers.zeros, (1, 1, c), x.dtype) x = jnp.concatenate([jnp.tile(cls, [n, 1, 1]), x], axis=1) # == Encoder n, l, c = x.shape # pylint: disable=unused-variable x, out["encoder"] = vit.Encoder( depth=self.depth, mlp_dim=self.mlp_dim, num_heads=self.num_heads, name="Transformer")(x) encoded = out["encoded"] = x if self.pool_type == "map": x = out["head_input"] = vit.MAPHead( num_heads=self.num_heads, mlp_dim=self.mlp_dim)(x) elif self.pool_type == "gap": x = out["head_input"] = jnp.mean(x, axis=1) elif self.pool_type == "tok": x = out["head_input"] = x[:, 0] encoded = encoded[:, 1:] else: raise ValueError(f"Unknown pool type: '{self.pool_type}'") x_2d = jnp.reshape(encoded, [n, h, w, -1]) out["pre_logits_2d"] = x_2d out["pre_logits"] = x if self.num_classes: kw = {"kernel_init": nn.initializers.zeros} if self.head_zeroinit else {} head = nn.Dense(self.num_classes, name="head", **kw) x_2d = out["logits_2d"] = head(x_2d) x = out["logits"] = head(x) return x, out def Model(num_classes, *, variant=None, **kw): # pylint: disable=invalid-name """Factory function, because linen really don't like what I'm doing!""" return _Model(num_classes, **{**vit.decode_variant(variant), **kw}) def load(init_params, init_file, model_cfg, dont_load=()): # pylint: disable=invalid-name because we had to CamelCase above. """Load init from checkpoint, both old model and this one. +Hi-res posemb.""" init_file = {**vit.VANITY_NAMES, **VANITY_NAMES}.get(init_file, init_file) restored_params = utils.load_params(init_file) restored_params = vit.fix_old_checkpoints(restored_params) # Potentially resize the position embedings if seqlen differs. restored_params["pos_embedding"] = vit.resample_posemb( old=restored_params["pos_embedding"], new=init_params["pos_embedding"]) # Potentially resize the patch embedding kernel. old_patchemb = restored_params["embedding"]["kernel"] restored_params["embedding"]["kernel"] = resample_patchemb( old=old_patchemb, new_hw=model_cfg.patch_size) # possibly use the random init for some of the params (such as, the head). restored_params = common.merge_params(restored_params, init_params, dont_load) return restored_params # Shortcut names for some canonical paper checkpoints: VANITY_NAMES = { # pylint: disable=line-too-long "FlexiViT-L i1k": "gs://big_vision/flexivit/flexivit_l_i1k.npz", "FlexiViT-B i1k": "gs://big_vision/flexivit/flexivit_b_i1k.npz", "FlexiViT-S i1k": "gs://big_vision/flexivit/flexivit_s_i1k.npz", "FlexiViT-B i21k 90ep": "gs://big_vision/flexivit/flexivit_b_i21k_90ep.npz", "FlexiViT-B i21k 300ep": "gs://big_vision/flexivit/flexivit_b_i21k_300ep.npz", "FlexiViT-B i21k 1000ep": "gs://big_vision/flexivit/flexivit_b_i21k_1000ep.npz", "ViT-B/16 i21k": "gs://big_vision/flexivit/vit_b16_i21k_300ep.npz", "ViT-B/30 i21k": "gs://big_vision/flexivit/vit_b30_i21k_300ep.npz", # pylint: enable=line-too-long }