# Copyright 2024 Big Vision Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the IRevNet adaptor.""" from big_vision.models.proj.givt import adaptor import jax from jax import random import jax.numpy as jnp from absl.testing import absltest class AdaptorTest(googletest.TestCase): def test_inversion(self): num_channels = 8 input_shape = (1, 24, 24, num_channels) rng = random.PRNGKey(758493) _, inp_rng, init_rng, data_rng = jax.random.split(rng, 4) dummy_x = random.normal(inp_rng, shape=input_shape) real_x = jax.random.normal(data_rng, shape=input_shape) model = adaptor.IRevNet( num_blocks=4, num_channels=num_channels, dropout_rate=0.0, ) params = model.init(init_rng, dummy_x) real_y = model.apply(params, real_x, method=model.forward) real_x_ = model.apply(params, real_y, method=model.inverse) self.assertTrue(jnp.allclose(real_x, real_x_, atol=1e-5)) if __name__ == "__main__": googletest.main()