# Copyright 2024 Big Vision Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Training loop with flexible/schedulable settings.""" # pylint: disable=consider-using-from-import import functools import importlib import multiprocessing.pool import os from absl import app from absl import flags from absl import logging import big_vision.evaluators.common as eval_common import big_vision.input_pipeline as input_pipeline import big_vision.optax as bv_optax import big_vision.trainers.proj.flexi.common as flexi import big_vision.utils as u from clu import parameter_overview import flax import jax import jax.numpy as jnp from ml_collections import config_flags import numpy as np import optax import tensorflow as tf from tensorflow.io import gfile # pylint: disable=logging-fstring-interpolation config_flags.DEFINE_config_file( "config", None, "Training configuration.", lock_config=True) flags.DEFINE_string("workdir", default=None, help="Work unit directory.") flags.DEFINE_boolean("cleanup", default=False, help="Delete workdir (only) after successful completion.") # Adds jax flags to the program. jax.config.parse_flags_with_absl() def main(argv): del argv tf.config.experimental.set_visible_devices([], "GPU") config = flags.FLAGS.config workdir = flags.FLAGS.workdir logging.info( f"\u001b[33mHello from process {jax.process_index()} holding " f"{jax.local_device_count()}/{jax.device_count()} devices and " f"writing to workdir {workdir}.\u001b[0m") save_ckpt_path = None if workdir: # Always create if requested, even if we may not write into it. gfile.makedirs(workdir) save_ckpt_path = os.path.join(workdir, "checkpoint.npz") # The pool is used to perform misc operations such as logging in async way. pool = multiprocessing.pool.ThreadPool() # Here we register preprocessing ops from modules listed on `pp_modules`. for m in config.get("pp_modules", ["ops_general", "ops_image", "ops_text"]): importlib.import_module(f"big_vision.pp.{m}") # This seed makes the Jax part of things (like model init) deterministic. # However, full training still won't be deterministic, for example due to the # tf.data pipeline not being deterministic even if we would set TF seed. # See (internal link) for a fun read on what it takes. rng = jax.random.PRNGKey(config.get("seed", 0)) # These functions do more stuff internally, for OSS release we mock them by # trivial alternatives in order to minize disruptions in the code. xid, wid = -1, -1 fillin = lambda s: s def info(s, *a): logging.info("\u001b[33mNOTE\u001b[0m: " + s, *a) def write_note(note): if jax.process_index() == 0: info("%s", note) write_note("Initializing...") batch_size = config.input.batch_size if batch_size % jax.device_count() != 0: raise ValueError(f"Batch size ({batch_size}) must " f"be divisible by device number ({jax.device_count()})") info("Global batch size %d on %d hosts results in %d local batch size. With " "%d dev per host (%d dev total), that's a %d per-device batch size.", batch_size, jax.process_count(), batch_size // jax.process_count(), jax.local_device_count(), jax.device_count(), batch_size // jax.device_count()) # First thing after above sanity checks, so we can log "start" ticks. mw = u.BigVisionMetricWriter(xid, wid, workdir, config) write_note("Initializing train dataset...") train_ds, ntrain_img = input_pipeline.training(config.input) # Start prefetching already. n_prefetch = config.get("prefetch_to_device", 1) train_iter = input_pipeline.start_input_pipeline(train_ds, n_prefetch) total_steps = u.steps("total", config, ntrain_img, batch_size) def get_steps(name, default=ValueError, cfg=config): return u.steps(name, cfg, ntrain_img, batch_size, total_steps, default) u.chrono.inform(total_steps=total_steps, global_bs=batch_size, steps_per_epoch=ntrain_img / batch_size, measure=mw.measure, write_note=write_note) info("Running for %d steps, that means %f epochs", total_steps, total_steps * batch_size / ntrain_img) write_note(f"Initializing {config.model_name} model...") model_mod = importlib.import_module(f"big_vision.models.{config.model_name}") model = model_mod.Model( num_classes=config.num_classes, **config.get("model", {})) # We want all parameters to be created in host RAM, not on any device, they'll # be sent there later as needed, otherwise we already encountered two # situations where we allocate them twice. @functools.partial(jax.jit, backend="cpu") def init(rng): shape = tuple(train_ds.element_spec["image"].shape[1:]) bs = batch_size // jax.device_count() dummy_input = jnp.zeros((bs,) + shape, jnp.float32) params = flax.core.unfreeze(model.init(rng, dummy_input))["params"] # Set bias in the head to a low value, such that loss is small initially. if "init_head_bias" in config: params["head"]["bias"] = jnp.full_like(params["head"]["bias"], config["init_head_bias"]) return params rng, rng_init = jax.random.split(rng) with u.chrono.log_timing("z/secs/init"): params_cpu = init(rng_init) if jax.process_index() == 0: num_params = sum(p.size for p in jax.tree_leaves(params_cpu)) parameter_overview.log_parameter_overview(params_cpu, msg="init params") mw.measure("num_params", num_params) write_note(f"Initializing {config.optax_name} optimizer...") tx, sched_fns = bv_optax.make(config, params_cpu, sched_kw=dict( total_steps=total_steps, batch_size=batch_size, data_size=ntrain_img)) # We jit this, such that the arrays are created on the CPU, not device[0]. opt_cpu = jax.jit(tx.init, backend="cpu")(params_cpu) sched_fns_cpu = [jax.jit(sched_fn, backend="cpu") for sched_fn in sched_fns] flexi_argnames = sorted(config.flexi) @functools.partial(jax.pmap, axis_name="batch", donate_argnums=(0, 1), static_broadcasted_argnums=tuple(range(5, 5 + len(flexi_argnames)))) def update_fn(params, opt, rng, images, labels, *args): """Update step.""" measurements = {} if config.get("mixup") and config.mixup.p: rng, (images, labels), _ = u.mixup(rng, images, labels, **config.mixup) # Get device-specific loss rng. rng, rng_model = jax.random.split(rng, 2) rng_model_local = jax.random.fold_in(rng_model, jax.lax.axis_index("batch")) def loss_fn(params, images, labels): logits, _ = model.apply( {"params": params}, images, train=True, rngs={"dropout": rng_model_local}, **dict(zip(flexi_argnames, args))) return getattr(u, config.get("loss", "sigmoid_xent"))( logits=logits, labels=labels) l, grads = jax.value_and_grad(loss_fn)(params, images, labels) l, grads = jax.lax.pmean((l, grads), axis_name="batch") updates, opt = tx.update(grads, opt, params) params = optax.apply_updates(params, updates) gs = jax.tree_leaves(bv_optax.replace_frozen(config.schedule, grads, 0.)) measurements["l2_grads"] = jnp.sqrt(sum([jnp.vdot(g, g) for g in gs])) ps = jax.tree_leaves(params) measurements["l2_params"] = jnp.sqrt(sum([jnp.vdot(p, p) for p in ps])) us = jax.tree_leaves(updates) measurements["l2_updates"] = jnp.sqrt(sum([jnp.vdot(u, u) for u in us])) return params, opt, rng, l, measurements # We do not jit/pmap this function, because it is passed to evaluator that # does it later. We output as many intermediate tensors as possible for # maximal flexibility. Later `jit` will prune out things that are not needed. def predict_fn(params, image, **flexi_kw): logits, out = model.apply({"params": params}, image, **flexi_kw) return logits, out # Decide how to initialize training. The order is important. # 1. Always resumes from the existing checkpoint, e.g. resumes a finetune job. # 2. Resume from a previous checkpoint, e.g. start a cooldown training job. # 3. Initialize model from something, e,g, start a fine-tuning job. # 4. Train from scratch. resume_ckpt_path = None if save_ckpt_path and gfile.exists(save_ckpt_path): resume_ckpt_path = save_ckpt_path elif config.get("resume"): resume_ckpt_path = fillin(config.resume) if resume_ckpt_path: write_note("Resume training from checkpoint...") checkpoint = { "params": params_cpu, "opt": opt_cpu, "chrono": u.chrono.save(), } checkpoint_tree = jax.tree_structure(checkpoint) loaded = u.load_checkpoint_np(resume_ckpt_path, checkpoint_tree) # bfloat16 type gets lost when data is saved to disk, so we recover it. checkpoint = jax.tree_map(u.recover_dtype, loaded) params_cpu, opt_cpu = checkpoint["params"], checkpoint["opt"] u.chrono.load(checkpoint["chrono"]) elif config.get("model_init"): write_note(f"Initialize model from {config.model_init}...") params_cpu = model_mod.load( params_cpu, config.model_init, config.get("model"), **config.get("model_load", {})) if jax.process_index() == 0: parameter_overview.log_parameter_overview( params_cpu, msg="restored params") write_note("Kicking off misc stuff...") first_step = bv_optax.get_count(opt_cpu) u.chrono.inform(first_step=first_step) prof = None # Keeps track of start/stop of profiler state. write_note(f"Replicating...\n{u.chrono.note}") params_repl = flax.jax_utils.replicate(params_cpu) opt_repl = flax.jax_utils.replicate(opt_cpu) @functools.cache def evaluators(): return eval_common.from_config( config, flexi.mkpredictfns(predict_fn, config.flexi, "predict_{x}"), lambda s: write_note(f"Init evaluator: {s}…\n{u.chrono.note}"), lambda key, cfg: get_steps(key, default=None, cfg=cfg), ) rng, rng_loop = jax.random.split(rng, 2) rngs_loop = flax.jax_utils.replicate(rng_loop) ckpt_writer = None write_note(f"First step compilations...\n{u.chrono.note}") # Note that training can be pre-empted during the final evaluation (i.e. # just after the final checkpoint has been written to disc), in which case we # want to run the evals. if first_step in (total_steps, 0): mw.step_start(first_step) for (name, evaluator, _, prefix) in evaluators(): if config.evals[name].get("skip_first") and first_step != total_steps: continue write_note(f"{name} evaluation...\n{u.chrono.note}") with u.chrono.log_timing(f"z/secs/eval/{name}"): for key, value in evaluator.run(params_repl): mw.measure(f"{prefix}{key}", value) # Using a python integer for step here, because opt.state.step is allocated # on TPU during replication. for step, batch in zip(range(first_step + 1, total_steps + 1), train_iter): mw.step_start(step) np_rng = flexi.mkrng(xm_xp.id, xm_wu.id, step) flexi_args = [ flexi.choice(config.flexi[n].v, config.flexi[n].p, np_rng) for n in flexi_argnames ] with jax.profiler.StepTraceAnnotation("train_step", step_num=step): with u.chrono.log_timing("z/secs/update0", noop=step > first_step + 1): params_repl, opt_repl, rngs_loop, loss_value, measurements = update_fn( params_repl, opt_repl, rngs_loop, batch["image"], batch["labels"], *flexi_args) # On the first host, let's always profile a handful of early steps. if jax.process_index() == 0: prof = u.startstop_prof(prof, step, first_step, get_steps("log_training")) # Report training progress if (u.itstime(step, get_steps("log_training"), total_steps, host=0) or u.chrono.warmup and jax.process_index() == 0): for i, sched_fn_cpu in enumerate(sched_fns_cpu): mw.measure(f"global_schedule{i if i else ''}", sched_fn_cpu(step - 1)) l = mw.measure("training_loss", loss_value[0]) for name, value in measurements.items(): mw.measure(name, value[0]) u.chrono.tick(step) if not np.isfinite(l): raise RuntimeError(f"The loss became nan or inf somewhere within steps " f"[{step - get_steps('log_training')}, {step}]") # Checkpoint saving if (save_ckpt_path and (u.itstime(step, get_steps("ckpt", None), total_steps, host=0) or u.itstime(step, get_steps("keep_ckpt", None), total_steps, host=0))): u.chrono.pause(wait_for=(params_repl, opt_repl)) u.checkpointing_timeout(ckpt_writer, config.get("ckpt_timeout", 1)) # We need to transfer the weights over now or else we risk keeping them # alive while they'll be updated in a future step, creating hard to debug # memory errors (see (internal link)). Also, takes device 0's params only. params_cpu = jax.tree_map(lambda x: np.array(x[0]), params_repl) opt_cpu = jax.tree_map(lambda x: np.array(x[0]), opt_repl) # Check whether we want to keep a copy of the current checkpoint. copy_step = None if u.itstime(step, get_steps("keep_ckpt", None), total_steps): copy_step = step ckpt = {"params": params_cpu, "opt": opt_cpu, "chrono": u.chrono.save()} ckpt_writer = pool.apply_async( u.save_checkpoint, (ckpt, save_ckpt_path, copy_step)) u.chrono.resume() for (name, evaluator, log_steps, prefix) in evaluators(): if u.itstime(step, log_steps, total_steps, first=False, last=True): u.chrono.pause(wait_for=params_repl) u.chrono.tick(step) # Record things like epoch number, core hours etc. write_note(f"{name} evaluation...\n{u.chrono.note}") with u.chrono.log_timing(f"z/secs/eval/{name}"): for key, value in evaluator.run(params_repl): mw.measure(f"{prefix}{key}", value) u.chrono.resume() mw.step_end() # Always give a chance to stop the profiler, no matter how things ended. # TODO: can we also do this when dying of an exception like OOM? if jax.process_index() == 0 and prof is not None: u.startstop_prof(prof) # Last note needs to happen before the pool's closed =) write_note(f"Done!\n{u.chrono.note}") pool.close() pool.join() mw.close() # Make sure all hosts stay up until the end of main. u.sync() u.maybe_cleanup_workdir(workdir, flags.FLAGS.cleanup, info) if __name__ == "__main__": app.run(main)