# Copyright 2023 Big Vision Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contrastive training loop. For models Like - LiT (https://arxiv.org/abs/2111.07991) - CLIP (https://arxiv.org/abs/2103.00020) - SigLIP (https://arxiv.org/abs/2303.15343) """ # pylint: disable=consider-using-from-import import functools import importlib import multiprocessing.pool import os from absl import app from absl import flags from absl import logging import big_vision.evaluators.common as eval_common import big_vision.input_pipeline as input_pipeline import big_vision.optax as bv_optax import big_vision.utils as u from clu import parameter_overview import flax import jax import jax.numpy as jnp from ml_collections import config_flags import numpy as np import optax import tensorflow as tf from tensorflow.io import gfile # pylint: disable=logging-fstring-interpolation config_flags.DEFINE_config_file( "config", None, "Training configuration.", lock_config=True) flags.DEFINE_string("workdir", default=None, help="Work unit directory.") flags.DEFINE_boolean("cleanup", default=False, help="Delete workdir (only) after successful completion.") # Adds jax flags to the program. jax.config.parse_flags_with_absl() def clip(x, *, a_max=None, a_min=None): """Like jnp.clip, but allows all-None to mean don't clip.""" if a_max is None and a_min is None: return x return jnp.clip(x, a_max=a_max, a_min=a_min) def all_gather(z, roll=False, only_others=False): """All gather and flatten first two dims.""" def gather_flat(x): x = jax.lax.all_gather(x, "batch") if roll or only_others: # Each device moves "its" chunk to the beginning. Simplies loss/acc calcs. x = jnp.roll(x, -jax.lax.axis_index("batch"), axis=0) if only_others: x = x[1:] return jnp.concatenate(x, 0) # Fold in "device" and "batch" dims. return jax.tree_map(gather_flat, z) def softmax_loss(zimg, ztxt, temperature): """Softmax loss following the CLIP paper. Factorized to reduce memory cost.""" def unidirectional_loss(z1, z2, t): z2 = all_gather(z2, roll=True) logits = jnp.dot(z1, z2.T) * t # This a softmax across the larger gathered axis, taking advantage of the # fact that positives are known to be on the diagonal. loss = -(jnp.diag(logits) - jax.scipy.special.logsumexp(logits, axis=-1)) acc = jnp.argmax(logits, axis=1) == jnp.arange(z1.shape[0]) return loss.mean(), acc.mean() extras = {} loss = 0 for name, row, col in [("i2t", zimg, ztxt), ("t2i", ztxt, zimg)]: loss_dir, acc_dir = unidirectional_loss(row, col, temperature) loss += 0.5 * loss_dir extras[f"{name}_acc"] = acc_dir extras[f"{name}_loss"] = loss_dir loss = jax.lax.pmean(loss, "batch") return loss, extras def _avg_pos_logit(x_me): return jnp.mean(jnp.diag(x_me)) def _avg_neg_logit(x_me, x_ot=None): nom = jnp.sum(x_me) - jnp.sum(jnp.diag(x_me)) den = x_me.size - len(x_me) if x_ot is not None and x_ot.size: nom += jnp.sum(x_ot) den += x_ot.size return nom / den def sigmoid_loss(zimg, ztxt, temperature, bias=0.0): """Sigmoid loss from SigLIP: https://arxiv.org/abs/2303.15343.""" # Sigmoid loss. Since it's unidirectional, image embeddings stick to # "me", i.e. the device they are computed on, and text embeddings travel. ztxt_me = ztxt # Text embeddings on my devices: (n, D) ztxt_ot = all_gather(ztxt, only_others=True) # Text emb from others: (N, D) logits_me = jnp.dot(zimg, ztxt_me.T) # (n, D) . (D, n) -> (n, n) logits_ot = jnp.dot(zimg, ztxt_ot.T) # (n, D) . (D, N) -> (n, N) logits_me = logits_me * temperature + bias logits_ot = logits_ot * temperature + bias eye = jnp.eye(zimg.shape[0]) # Standard sigmoid computes everything twice, once assuming positive # labels and once assuming negative ones. But here we know exactly where # to find positives (on "me" diagonal) and negatives (everywhere else), # so compute each one's loss only once: m1_diag1 = -jnp.ones_like(logits_me) + 2 * eye loglik_me = jax.nn.log_sigmoid(m1_diag1 * logits_me) loglik_ot = jax.nn.log_sigmoid(-logits_ot) # Normalize by npos per column, but that's one, so just sum. nll_me = -loglik_me.sum(axis=-1) nll_ot = -loglik_ot.sum(axis=-1) l = nll_me.mean() + nll_ot.mean() # == concat'ing me/ot along axis -1 above. return l, { # Only local device metrics for now, as last time I tried, there was # some funny unimplemented business with jax.lax.pmin/pmax! # So what's reported here is average of per-device min/max/avg. "pos_min_logit": jnp.min(jnp.diag(logits_me)), "pos_max_logit": jnp.max(jnp.diag(logits_me)), "pos_avg_logit": _avg_pos_logit(logits_me), "local_neg_min_logit": jnp.min(logits_me + 1e9 * eye), "local_neg_max_logit": jnp.max(logits_me - 1e9 * eye), "local_neg_avg_logit": _avg_neg_logit(logits_me), "neg_min_logit": jnp.minimum( jnp.min(logits_me + 1e9 * eye), jnp.min(logits_ot) if logits_ot.size else jnp.inf), "neg_max_logit": jnp.maximum( jnp.max(logits_me - 1e9 * eye), jnp.max(logits_ot) if logits_ot.size else -jnp.inf), "neg_avg_logit": _avg_neg_logit(logits_me, logits_ot), } def _gather_from_device(x, device_id, axis_name="batch"): return jax.lax.psum((jax.lax.axis_index(axis_name) == device_id) * x, axis_name) def chunked_sigmoid_loss(zimg, ztxt, temperature, bias=0.0): """Loss computation from section 3.1 of arxiv.org/abs/2303.15343.""" # Calculate loss for representations on this device, which includes positives. logits_me = jnp.dot(zimg, ztxt.T) # (n, D) . (D, n) -> (n, n) logits_me = logits_me * temperature + bias m1_diag1 = -jnp.ones_like(logits_me) + 2 * jnp.eye(zimg.shape[0]) loglik_me = jax.nn.log_sigmoid(m1_diag1 * logits_me) nll_me = -loglik_me.sum(axis=-1).mean() def negative_loss(ztxt_other_device): logits_ot = jnp.dot(zimg, ztxt_other_device.T) # (n, D) . (D, n) -> (n, n) logits_ot = logits_ot * temperature + bias loglik_ot = jax.nn.log_sigmoid(-logits_ot) return -jnp.sum(loglik_ot, axis=-1).mean() me = jax.lax.axis_index("batch") # All other devices are negatives. Hot-potato swap ztxt across devices. # Interestingly, ppermute based implementation was memory intensive, so using # all-reduce to gather representations. nll_others = 0 for device_id in range(jax.device_count()): skip = jnp.not_equal(device_id, me) nll_others += skip * negative_loss(_gather_from_device(ztxt, device_id)) eye = jnp.eye(zimg.shape[0]) return nll_me + nll_others, { "pos_min_logit": jnp.min(jnp.diag(logits_me)), "pos_max_logit": jnp.max(jnp.diag(logits_me)), "pos_avg_logit": _avg_pos_logit(logits_me), "local_neg_min_logit": jnp.min(logits_me + 1e9 * eye), "local_neg_max_logit": jnp.max(logits_me - 1e9 * eye), "local_neg_avg_logit": _avg_neg_logit(logits_me),} def main(argv): del argv tf.config.experimental.set_visible_devices([], "GPU") config = flags.FLAGS.config workdir = flags.FLAGS.workdir logging.info( # pylint: disable=logging-fstring-interpolation f"\u001b[33mHello from process {jax.process_index()} holding " f"{jax.local_device_count()}/{jax.device_count()} devices and " f"writing to workdir {workdir}.\u001b[0m") save_ckpt_path = None if workdir: # Always create if requested, even if we may not write into it. gfile.makedirs(workdir) save_ckpt_path = os.path.join(workdir, "checkpoint.npz") # The pool is used to perform misc operations such as logging in async way. pool = multiprocessing.pool.ThreadPool() # Here we register preprocessing ops from modules listed on `pp_modules`. for m in config.get("pp_modules", ["ops_general", "ops_image", "ops_text"]): importlib.import_module(f"big_vision.pp.{m}") # This seed makes the Jax part of things (like model init) deterministic. # However, full training still won't be deterministic, for example due to the # tf.data pipeline not being deterministic even if we would set TF seed. # See (internal link) for a fun read on what it takes. rng = jax.random.PRNGKey(config.get("seed", 0)) # These functions do more stuff internally, for OSS release we mock them by # trivial alternatives in order to minize disruptions in the code. xid, wid = -1, -1 def info(s, *a): logging.info("\u001b[33mNOTE\u001b[0m: " + s, *a) def write_note(note): if jax.process_index() == 0: info("%s", note) write_note("Initializing...") batch_size = config.input.batch_size if batch_size % jax.device_count() != 0: raise ValueError(f"Batch size ({batch_size}) must " f"be divisible by device number ({jax.device_count()})") info("Global batch size %d on %d hosts results in %d local batch size. With " "%d dev per host (%d dev total), that's a %d per-device batch size.", batch_size, jax.process_count(), batch_size // jax.process_count(), jax.local_device_count(), jax.device_count(), batch_size // jax.device_count()) # First thing after above sanity checks, so we can log "start" ticks. mw = u.BigVisionMetricWriter(xid, wid, workdir, config) write_note("Initializing train dataset...") train_ds, ntrain_img = input_pipeline.training(config.input) # Start prefetching already. n_prefetch = config.get("prefetch_to_device", 1) train_iter = input_pipeline.start_input_pipeline(train_ds, n_prefetch) total_steps = u.steps("total", config, ntrain_img, batch_size) def get_steps(name, default=ValueError, cfg=config): return u.steps(name, cfg, ntrain_img, batch_size, total_steps, default) u.chrono.inform(total_steps=total_steps, global_bs=batch_size, steps_per_epoch=ntrain_img / batch_size, measure=mw.measure, write_note=write_note) info("Running for %d steps, that means %f epochs", total_steps, total_steps * batch_size / ntrain_img) write_note(f"Initializing {config.model_name} model...") model_mod = importlib.import_module(f"big_vision.models.{config.model_name}") model = model_mod.Model(**config.get("model", {})) # We want all parameters to be created in host RAM, not on any device, they'll # be sent there later as needed, otherwise we already encountered two # situations where we allocate them twice. @functools.partial(jax.jit, backend="cpu") def init(rng): bs = batch_size // jax.device_count() image_size = tuple(train_ds.element_spec["image"].shape[1:]) no_image = jnp.zeros((bs,) + image_size, jnp.float32) text_size = tuple(train_ds.element_spec["labels"].shape[1:]) no_text = jnp.zeros((bs,) + text_size, jnp.int32) params = flax.core.unfreeze(model.init(rng, no_image, no_text))["params"] return params rng, rng_init = jax.random.split(rng) with u.chrono.log_timing("z/secs/init"): params_cpu = init(rng_init) if jax.process_index() == 0: num_params = sum(p.size for p in jax.tree_leaves(params_cpu)) parameter_overview.log_parameter_overview(params_cpu, msg="init params") mw.measure("num_params", num_params) write_note(f"Initializing {config.optax_name} optimizer...") tx, sched_fns = bv_optax.make(config, params_cpu, sched_kw=dict( total_steps=total_steps, batch_size=batch_size, data_size=ntrain_img)) # We jit this, such that the arrays are created on the CPU, not device[0]. opt_cpu = jax.jit(tx.init, backend="cpu")(params_cpu) sched_fns_cpu = [jax.jit(sched_fn, backend="cpu") for sched_fn in sched_fns] @functools.partial(jax.pmap, axis_name="batch", donate_argnums=(0, 1)) def update_fn(params, opt, rng, batch): """Update step.""" assert "mixup" not in config, "We still have to figure out mixup." # Get device-specific loss rng. rng, rng_model = jax.random.split(rng, 2) rng_model_local = jax.random.fold_in(rng_model, jax.lax.axis_index("batch")) def loss_fn(params, images, labels): zimg, ztxt, extras = model.apply( {"params": params}, images, labels, train=True, rngs={"dropout": rng_model_local}) match config.get("loss_fn", "softmax"): case "softmax": l, l_extras = softmax_loss(zimg, ztxt, extras["t"]) case "sigmoid": l, l_extras = sigmoid_loss(zimg, ztxt, extras["t"], bias=extras["b"]) case "chunked_sigmoid": l, l_extras = chunked_sigmoid_loss(zimg, ztxt, extras["t"], bias=extras["b"]) case _: raise NotImplementedError(f"Unrecognized loss {config.loss_fn=}") return l, { "t": extras["t"], "t/parameter": extras["t/parameter"], "train/nimg": jnp.mean(extras["img/norm"]), "train/ntxt": jnp.mean(extras["txt/norm"]), **{f"train/{k}": v for k, v in l_extras.items()}, } (l, measurements), grads = jax.value_and_grad( loss_fn, has_aux=True)(params, batch["image"], batch["labels"]) l, measurements, grads = jax.lax.pmean((l, measurements, grads), axis_name="batch") updates, opt = tx.update(grads, opt, params) params = optax.apply_updates(params, updates) gs = jax.tree_leaves(bv_optax.replace_frozen(config.schedule, grads, 0.)) measurements["l2_grads"] = jnp.sqrt(sum([jnp.vdot(g, g) for g in gs])) ps = jax.tree_leaves(params) measurements["l2_params"] = jnp.sqrt(sum([jnp.vdot(p, p) for p in ps])) us = jax.tree_leaves(updates) measurements["l2_updates"] = jnp.sqrt(sum([jnp.vdot(u, u) for u in us])) return params, opt, rng, l, measurements # We require hashable function reference for evaluator. # We do not jit/pmap this function, because it is passed to evaluator that # does it later. We output as many intermediate tensors as possible for # maximal flexibility. Later `jit` will prune out things that are not needed. def predict_fn(params, image=None, text=None, **unused_kwargs): del unused_kwargs # `unused_kwargs` is to be compatible with few-shot zimg, ztxt, out = model.apply({"params": params}, image, text) return zimg, ztxt, out # Only initialize evaluators when they are first needed. @functools.lru_cache(maxsize=None) def evaluators(): return eval_common.from_config( config, {"predict": predict_fn}, lambda s: write_note(f"Init evaluator: {s}…\n{u.chrono.note}"), lambda key, cfg: get_steps(key, default=None, cfg=cfg), ) # Decide how to initialize training. The order is important. # 1. Always resumes from the existing checkpoint, e.g. resumes a finetune job. # 2. Resume from a previous checkpoint, e.g. start a cooldown training job. # 3. Initialize model from something, e,g, start a fine-tuning job. # 4. Train from scratch. resume_ckpt_path = None if save_ckpt_path and gfile.exists(save_ckpt_path): resume_ckpt_path = save_ckpt_path elif config.get("resume"): resume_ckpt_path = config.resume.format(wid=xm_wu.id) if resume_ckpt_path: write_note("Resume training from checkpoint...") checkpoint = { "params": params_cpu, "opt": opt_cpu, "chrono": u.chrono.save(), } checkpoint_tree = jax.tree_structure(checkpoint) loaded = u.load_checkpoint_np(resume_ckpt_path, checkpoint_tree) # bfloat16 type gets lost when data is saved to disk, so we recover it. checkpoint = jax.tree_map(u.recover_dtype, loaded) params_cpu, opt_cpu = checkpoint["params"], checkpoint["opt"] u.chrono.load(checkpoint["chrono"]) elif config.get("model_init"): write_note(f"Initialize model from {config.model_init}...") params_cpu = model_mod.load( params_cpu, config.model_init, config.get("model"), **config.get("model_load", {})) if jax.process_index() == 0: parameter_overview.log_parameter_overview( params_cpu, msg="restored params") write_note("Kicking off misc stuff...") first_step = bv_optax.get_count(opt_cpu) u.chrono.inform(first_step=first_step) prof = None # Keeps track of start/stop of profiler state. write_note(f"Replicating...\n{u.chrono.note}") params_repl = flax.jax_utils.replicate(params_cpu) opt_repl = flax.jax_utils.replicate(opt_cpu) rng, rng_loop = jax.random.split(rng, 2) rngs_loop = flax.jax_utils.replicate(rng_loop) ckpt_writer = None write_note(f"First step compilations...\n{u.chrono.note}") # Note that training can be pre-empted during the final evaluation (i.e. # just after the final checkpoint has been written to disc), in which case we # want to run the evals. if first_step in (total_steps, 0): mw.step_start(first_step) for (name, evaluator, _, prefix) in evaluators(): if config.evals[name].get("skip_first") and first_step != total_steps: continue write_note(f"{name} evaluation...\n{u.chrono.note}") with u.chrono.log_timing(f"z/secs/eval/{name}"): for key, value in evaluator.run(params_repl): mw.measure(f"{prefix}{key}", value) # Using a python integer for step here, because opt.state.step is allocated # on TPU during replication. for step, batch in zip(range(first_step + 1, total_steps + 1), train_iter): mw.step_start(step) with jax.profiler.StepTraceAnnotation("train_step", step_num=step): with u.chrono.log_timing("z/secs/update0", noop=step > first_step + 1): params_repl, opt_repl, rngs_loop, loss_value, measurements = update_fn( params_repl, opt_repl, rngs_loop, batch) # On the first host, let's always profile a handful of early steps. if jax.process_index() == 0: prof = u.startstop_prof(prof, step, first_step, get_steps("log_training")) # Report training progress if (u.itstime(step, get_steps("log_training"), total_steps, host=0) or u.chrono.warmup and jax.process_index() == 0): for i, sched_fn_cpu in enumerate(sched_fns_cpu): mw.measure(f"global_schedule{i if i else ''}", sched_fn_cpu(step - 1)) l = mw.measure("training_loss", loss_value[0]) for name, value in measurements.items(): mw.measure(name, value[0]) u.chrono.tick(step) if not np.isfinite(l): raise RuntimeError(f"The loss became nan or inf somewhere within steps " f"[{step - get_steps('log_training')}, {step}]") # Checkpoint saving if (save_ckpt_path and (u.itstime(step, get_steps("ckpt", None), total_steps, host=0) or u.itstime(step, get_steps("keep_ckpt", None), total_steps, host=0))): u.chrono.pause(wait_for=(params_repl, opt_repl)) u.checkpointing_timeout(ckpt_writer, config.get("ckpt_timeout", 1)) # We need to transfer the weights over now or else we risk keeping them # alive while they'll be updated in a future step, creating hard to debug # memory errors (see (internal link)). Also, takes device 0's params only. params_cpu = jax.tree_map(lambda x: np.array(x[0]), params_repl) opt_cpu = jax.tree_map(lambda x: np.array(x[0]), opt_repl) # Check whether we want to keep a copy of the current checkpoint. copy_step = None if u.itstime(step, get_steps("keep_ckpt", None), total_steps): copy_step = step ckpt = {"params": params_cpu, "opt": opt_cpu, "chrono": u.chrono.save()} ckpt_writer = pool.apply_async( u.save_checkpoint, (ckpt, save_ckpt_path, copy_step)) u.chrono.resume() for (name, evaluator, log_steps, prefix) in evaluators(): if u.itstime(step, log_steps, total_steps, first=False, last=True): u.chrono.pause(wait_for=params_repl) u.chrono.tick(step) # Record things like epoch number, core hours etc. write_note(f"{name} evaluation...\n{u.chrono.note}") with u.chrono.log_timing(f"z/secs/eval/{name}"): for key, value in evaluator.run(params_repl): mw.measure(f"{prefix}{key}", value) u.chrono.resume() mw.step_end() # Always give a chance to stop the profiler, no matter how things ended. # TODO: can we also do this when dying of an exception like OOM? if jax.process_index() == 0 and prof is not None: u.startstop_prof(prof) # Last note needs to happen before the pool's closed =) write_note(f"Done!\n{u.chrono.note}") pool.close() pool.join() mw.close() # Make sure all hosts stay up until the end of main. u.sync() u.maybe_cleanup_workdir(workdir, flags.FLAGS.cleanup, info) if __name__ == "__main__": app.run(main)