# Copyright 2024 Big Vision Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long r"""Distilling BiT-R152x2 into BiT-R50x1 on ILSVRC-2012 as in https://arxiv.org/abs/2106.05237 Note that as per paper title, good results require many epochs and thus a lot of _patience_. For experimentation/exploration, consider using the smaller datasets. 300ep take about 15h on a v3-32 TPU, an example log is available at: Example logs at gs://big_vision/distill/bit_i1k_300ep_06-16/big_vision_metrics.txt big_vision.trainers.proj.distill.distill \ --config big_vision/configs/proj/distill/bit_i1k.py \ --workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \ --config.total_epochs 1200 """ import big_vision.configs.common as bvcc from big_vision.configs.common_fewshot import get_fewshot_lsr import big_vision.configs.proj.distill.common as cd import ml_collections as mlc def get_config(arg=None): """Config for distilling on ImageNet.""" arg = bvcc.parse_arg(arg, runlocal=False) config = mlc.ConfigDict() config.input = {} config.input.data = dict(name='imagenet2012', split='train[:98%]') config.input.batch_size = 4096 config.input.shuffle_buffer_size = 250_000 config.num_classes = 1000 config.total_epochs = 1200 # A good middle-ground config.log_training_steps = 50 config.ckpt_steps = 1000 config.keep_ckpt_steps = 20000 # Model section config.student_name = 'bit_paper' config.student = dict(depth=50, width=1) config.teachers = ['prof_m'] # You could even add multiple. # TODO: use public checkpoint name. config.prof_m_name = 'bit_paper' config.prof_m_init = cd.inits['BiT-M R152x2 imagenet2012 ic224'] config.prof_m = dict(depth=152, width=2) pp_common = ( '|value_range(-1, 1)' '|onehot(1000, key="{lbl}", key_result="labels")' '|keep("image", "labels")' ) config.input.pp = ( 'decode_jpeg_and_inception_crop(224)|flip_lr' + pp_common.format(lbl='label') ) ppv = 'decode|resize_small(256)|central_crop(224)' + pp_common config.mixup = dict(p=1.0) # Distillation settings config.distance = 'kl' config.distance_kw = dict(t=1.0) # Optimizer section config.grad_clip_norm = 1.0 config.optax_name = 'scale_by_adam' config.optax = dict(mu_dtype='bfloat16') config.lr = 0.03 config.wd = 0.0003 config.schedule = dict(warmup_steps=5000, decay_type='cosine') # Eval section minitrain_split = 'train[:2%]' if not arg.runlocal else 'train[:16]' minival_split = 'train[99%:]' if not arg.runlocal else 'train[:16]' val_split = 'validation' if not arg.runlocal else 'validation[:16]' real_split = 'validation' if not arg.runlocal else 'validation[:16]' v2_split = 'test' if not arg.runlocal else 'test[:16]' def get_eval(split, dataset='imagenet2012'): return dict( type='classification', pred='student_fwd', data=dict(name=dataset, split=split), pp_fn=ppv.format(lbl='label'), loss_name='softmax_xent', log_steps=1000, ) config.evals = {} config.evals.student_train = get_eval(minitrain_split) config.evals.student_minival = get_eval(minival_split) config.evals.student_val = get_eval(val_split) config.evals.student_v2 = get_eval(v2_split, dataset='imagenet_v2') config.evals.student_real = get_eval(real_split, dataset='imagenet2012_real') config.evals.student_real.pp_fn = ppv.format(lbl='real_label') config.evals.student_fewshot = get_fewshot_lsr(runlocal=arg.runlocal) config.evals.student_fewshot.pred = 'student_fwd' config.evals.student_fewshot.log_steps = 10_000 teacher_eval = dict( log_steps=100_000, # Teacher is fixed, so rare evals. pred='prof_m_fwd', ) config.evals.teacher_train = {**config.evals.student_train, **teacher_eval} config.evals.teacher_minival = {**config.evals.student_minival, **teacher_eval} config.evals.teacher_val = {**config.evals.student_val, **teacher_eval} config.evals.teacher_v2 = {**config.evals.student_v2, **teacher_eval} config.evals.teacher_real = {**config.evals.student_real, **teacher_eval} config.evals.teacher_fewshot = {**config.evals.student_fewshot, **teacher_eval} config.evals.teacher_fewshot.prefix = 'z_teacher/' # Could in principle also look at agreement on other datasets! def get_dist(split, dataset='imagenet2012'): return dict( type='proj.distill.distance', pred='student_prof_m_fwd', data=dict(name=dataset, split=split), pp_fn=ppv.format(lbl='label') + '|keep("image")', log_steps=1000, distances=({'kind': 'kl'}, {'kind': 'euclidean'}, {'kind': 'agree', 'k': 1}, {'kind': 'agree', 'k': 5}), ) config.evals.dist_train = get_dist(minitrain_split) config.evals.dist_minival = get_dist(minival_split) config.evals.dist_val = get_dist(val_split) config.evals.dist_v2 = get_dist(v2_split, dataset='imagenet_v2') # NOTE: CKA evaluator does not work with batch padding, so the size of the # split must be a multiple of the batch size. def get_cka(split): return dict( type='proj.distill.cka', pred='student_prof_m_fwd', data=dict(name='imagenet2012', split=split), pp_fn=ppv.format(lbl='label') + '|keep("image")', log_steps=1000, ) config.evals.cka_train = get_cka('train[:24576]' if not arg.runlocal else 'train[:16]') config.evals.cka_minival = get_cka('train[-24576:]' if not arg.runlocal else 'train[:16]') config.evals.cka_val = get_cka('validation[:49152]' if not arg.runlocal else 'validation[:16]') # Make a few things much smaller for quick local debugging testruns. if arg.runlocal: config.input.shuffle_buffer_size = 10 config.input.batch_size = 8 return config