# Copyright 2024 Big Vision Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long,missing-function-docstring r"""A config for transferring vit-augreg. Best HP selected on (mini)val, expected test results (repeated 5 times): ViT-Augreg-B/32: Dataset, crop, learning rate, mean (%), range (%) - ImageNet, inception_crop, 0.03, 83.27, [83.22...83.33] - Cifar10, resmall_crop, 0.003, 98.55, [98.46...98.6] - Cifar100, resmall_crop, 0.01, 91.35, [91.09...91.62] - Pets, inception_crop, 0.003, 93.78, [93.62...94.00] - Flowers, inception_crop, 0.003, 99.43, [99.42...99.45] Command to run: big_vision.train \ --config big_vision/configs/transfer.py:model=vit-i21k-augreg-b/32,dataset=cifar10,crop=resmall_crop \ --workdir gs://$GS_BUCKET_NAME/big_vision/workdir/`date '+%m-%d_%H%M'` --config.lr=0.03 """ import big_vision.configs.common as bvcc import ml_collections as mlc def _set_model(config, model): """Load pre-trained models: vit or bit.""" # Reset the head to init (of zeros) when transferring. config.model_load = dict(dont_load=['head/kernel', 'head/bias']) if model == 'vit-i21k-augreg-b/32': # Load "recommended" upstream B/32 from https://arxiv.org/abs/2106.10270 config.model_name = 'vit' config.model_init = 'howto-i21k-B/32' config.model = dict(variant='B/32', pool_type='tok') elif model == 'vit-i21k-augreg-l/16': config.model_name = 'vit' config.model_init = 'howto-i21k-L/16' config.model = dict(variant='L/16', pool_type='tok') elif model == 'vit-s16': config.model_name = 'vit' config.model_init = 'i1k-s16-300ep' config.model = dict(variant='S/16', pool_type='gap', posemb='sincos2d', rep_size=True) elif model == 'bit-m-r50x1': config.model_name = 'bit_paper' config.model_init = 'M' config.model = dict(depth=50, width=1) else: raise ValueError(f'Unknown model: {model}, please define customized model.') def _set_dataset(config, dataset, crop='inception_crop', h_res=448, l_res=384): if dataset == 'cifar10': _set_task(config, 'cifar10', 'train[:98%]', 'train[98%:]', 'test', 10, steps=10_000, warmup=500, crop=crop, h_res=h_res, l_res=l_res) elif dataset == 'cifar100': _set_task(config, 'cifar100', 'train[:98%]', 'train[98%:]', 'test', 100, steps=10_000, warmup=500, crop=crop, h_res=h_res, l_res=l_res) elif dataset == 'imagenet2012': _set_task(config, 'imagenet2012', 'train[:99%]', 'train[99%:]', 'validation', 1000, steps=20_000, warmup=500, crop=crop, h_res=h_res, l_res=l_res) _set_imagenet_variants(config) elif dataset == 'oxford_iiit_pet': _set_task(config, 'oxford_iiit_pet', 'train[:90%]', 'train[90%:]', 'test', 37, steps=500, warmup=100, crop=crop, h_res=h_res, l_res=l_res) elif dataset == 'oxford_flowers102': _set_task(config, 'oxford_flowers102', 'train[:90%]', 'train[90%:]', 'test', 102, steps=500, warmup=100, crop=crop, h_res=h_res, l_res=l_res) else: raise ValueError( f'Unknown dataset: {dataset}, please define customized dataset.') def _set_task(config, dataset, train, val, test, n_cls, steps=20_000, warmup=500, lbl='label', crop='resmall_crop', flip=True, h_res=448, l_res=384): """Vision task with val and test splits.""" config.total_steps = steps config.schedule = dict( warmup_steps=warmup, decay_type='cosine', ) config.input.data = dict(name=dataset, split=train) pp_common = ( '|value_range(-1, 1)|' f'onehot({n_cls}, key="{lbl}", key_result="labels")|' 'keep("image", "labels")' ) if crop == 'inception_crop': pp_train = f'decode|inception_crop({l_res})' elif crop == 'resmall_crop': pp_train = f'decode|resize_small({h_res})|random_crop({l_res})' elif crop == 'resize_crop': pp_train = f'decode|resize({h_res})|random_crop({l_res})' else: raise ValueError(f'Unknown crop: {crop}. Must be one of: ' 'inception_crop, resmall_crop, resize_crop') if flip: pp_train += '|flip_lr' config.input.pp = pp_train + pp_common pp = f'decode|resize_small({h_res})|central_crop({l_res})' + pp_common config.num_classes = n_cls def get_eval(split): return dict( type='classification', data=dict(name=dataset, split=split), loss_name='softmax_xent', log_steps=100, pp_fn=pp, ) config.evals = dict(val=get_eval(val), test=get_eval(test)) def _set_imagenet_variants(config, h_res=448, l_res=384): """Evaluation tasks on ImageNet variants: v2 and real.""" pp = (f'decode|resize_small({h_res})|central_crop({l_res})' '|value_range(-1, 1)|onehot(1000, key="{lbl}", key_result="labels")|' 'keep("image", "labels")' ) # Special-case rename for i1k (val+test -> minival+val) config.evals.minival = config.evals.val config.evals.val = config.evals.test # NOTE: keep test == val for convenience in subsequent analysis. config.evals.real = dict(type='classification') config.evals.real.data = dict(name='imagenet2012_real', split='validation') config.evals.real.pp_fn = pp.format(lbl='real_label') config.evals.real.loss_name = config.loss config.evals.real.log_steps = 100 config.evals.v2 = dict(type='classification') config.evals.v2.data = dict(name='imagenet_v2', split='test') config.evals.v2.pp_fn = pp.format(lbl='label') config.evals.v2.loss_name = config.loss config.evals.v2.log_steps = 100 def get_config(arg=None): """Config for adaptation.""" arg = bvcc.parse_arg(arg, model='vit', dataset='cifar10', crop='resmall_crop', h_res=448, l_res=384, batch_size=512, fsdp=False, runlocal=False) config = mlc.ConfigDict() config.input = {} config.input.batch_size = arg.batch_size if not arg.runlocal else 8 config.input.shuffle_buffer_size = 50_000 if not arg.runlocal else 100 config.log_training_steps = 10 config.ckpt_steps = 1000 config.ckpt_timeout = 600 # Optimizer section config.optax_name = 'big_vision.momentum_hp' config.grad_clip_norm = 1.0 config.wd = None # That's our default, but just being explicit here! config.loss = 'softmax_xent' config.lr = 0.01 config.mixup = dict(p=0.0) config.seed = 0 _set_dataset(config, arg.dataset, arg.crop, arg.h_res, arg.l_res) _set_model(config, arg.model) if arg.fsdp: config.mesh = [('data', -1)] config.sharding_strategy = [('.*', 'fsdp(axis="data")')] config.sharding_rules = [('act_batch', ('data',))] config.model.scan = True return config