mk / rp.py
pranavajay's picture
Update rp.py
058f52d verified
raw
history blame
1.9 kB
from safetensors.torch import load_file, save_file
import torch
import torch.nn.functional as F
from tqdm import tqdm # Ensure tqdm is installed
def load_model(file_path):
return load_file(file_path)
def save_model(merged_model, output_file):
print(f"Saving merged model to {output_file}")
save_file(merged_model, output_file)
def resize_tensor_shapes(tensor1, tensor2):
if tensor1.size() == tensor2.size():
return tensor1, tensor2
max_shape = [max(s1, s2) for s1, s2 in zip(tensor1.shape, tensor2.shape)]
tensor1_resized = F.pad(tensor1, (0, max_shape[-1] - tensor1.size(-1)))
tensor2_resized = F.pad(tensor2, (0, max_shape[-1] - tensor2.size(-1)))
return tensor1_resized, tensor2_resized
def merge_checkpoints(ckpt1, ckpt2, blend_ratio=0.5):
print(f"Merging checkpoints with blend ratio: {blend_ratio}")
merged = {}
all_keys = set(ckpt1.keys()).union(set(ckpt2.keys()))
for key in tqdm(all_keys, desc="Merging Checkpoints", unit="layer"):
t1, t2 = ckpt1.get(key), ckpt2.get(key)
if t1 is not None and t2 is not None:
t1, t2 = resize_tensor_shapes(t1, t2)
merged[key] = blend_ratio * t1 + (1 - blend_ratio) * t2
elif t1 is not None:
merged[key] = t1
else:
merged[key] = t2
return merged
if __name__ == "__main__":
# Set your file paths and blend ratio here
model1_path = "flux1-dev.safetensors.1" # Model 1 path
model2_path = "brainflux_v10.safetensors" # Model 2 path
blend_ratio = 0.4 # Blend ratio
output_file = "output_checkpoint.safetensors" # Output file name
# Load the models
model1 = load_model(model1_path)
model2 = load_model(model2_path)
# Merge the models
merged_model = merge_checkpoints(model1, model2, blend_ratio)
# Save the merged model
save_model(merged_model, output_file)