--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - Hemanth-thunder/Tamil-Mistral-7B-v0.1 - abhinand/tamil-llama-7b-instruct-v0.2 base_model: - Hemanth-thunder/Tamil-Mistral-7B-v0.1 - abhinand/tamil-llama-7b-instruct-v0.2 --- # SG-Tamil-MoE-7B SG-Tamil-MoE-7B is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Hemanth-thunder/Tamil-Mistral-7B-v0.1](https://huggingface.co/Hemanth-thunder/Tamil-Mistral-7B-v0.1) * [abhinand/tamil-llama-7b-instruct-v0.2](https://huggingface.co/abhinand/tamil-llama-7b-instruct-v0.2) ## 🧩 Configuration ```yaml base_model: Hemanth-thunder/Tamil-Mistral-7B-v0.1 experts: - source_model: Hemanth-thunder/Tamil-Mistral-7B-v0.1 positive_prompts: - "பேச்சு" # "chat" - "உதவி" # "assistant" - "எனக்கு சொல்" # "tell me" - "விளக்கம்" # "explain" - "நான் விரும்புகிறேன்" # "I want" - source_model: abhinand/tamil-llama-7b-instruct-v0.2 positive_prompts: - "அறிவுரை" # "advice" - "நிர்வாகம்" # "management" - "உத்தரவாதம்" # "instructions" - "பயிற்சி" # "training" - "செயல்முறை" # "procedure" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "praveengovi/SG-Tamil-MoE-7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```