File size: 14,952 Bytes
5f822d2
a2996e5
 
 
5f822d2
a695f59
 
 
 
 
a2996e5
 
a695f59
 
 
ad15d29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f1d321
 
 
ad15d29
6f1d321
 
ad15d29
 
 
 
 
 
 
 
6f1d321
 
 
ad15d29
6f1d321
ad15d29
 
 
 
 
 
 
 
 
6f1d321
 
 
ad15d29
6f1d321
ad15d29
 
 
 
 
 
 
 
 
6f1d321
 
 
ad15d29
6f1d321
 
ad15d29
 
 
 
 
 
 
 
6f1d321
 
 
ad15d29
6f1d321
ad15d29
 
 
 
 
 
 
 
 
6f1d321
 
 
ad15d29
6f1d321
ad15d29
 
 
 
 
 
5f822d2
 
a695f59
5817e8d
 
5f822d2
a695f59
 
 
 
 
 
 
5f822d2
a695f59
5f822d2
 
 
 
a695f59
 
 
5817e8d
5f822d2
 
 
 
 
 
 
d805640
 
 
cb5f15f
d805640
5f822d2
d805640
5f822d2
d805640
 
 
 
5f822d2
 
 
 
 
a695f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d805640
20e4cbb
a695f59
 
 
 
 
 
 
 
d805640
a695f59
 
 
 
 
 
 
 
 
 
 
a3a6e67
 
 
 
 
 
 
 
 
f76b164
a3a6e67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f822d2
 
 
 
 
7a19e2b
 
 
 
a139750
7a19e2b
 
a139750
7a19e2b
 
 
 
5f822d2
 
 
a695f59
5f822d2
a695f59
 
 
5f822d2
cb5f15f
 
 
 
 
 
 
5f822d2
a695f59
5f822d2
cb5f15f
 
 
 
 
 
 
 
 
5f822d2
cb5f15f
 
 
5f822d2
 
 
cb5f15f
5f822d2
 
7a19e2b
5f822d2
7a19e2b
 
 
 
 
 
 
5f822d2
7a19e2b
5f822d2
 
 
421f0a0
 
 
 
 
 
 
 
 
5f822d2
a695f59
5f822d2
 
 
a695f59
5f822d2
 
 
a695f59
 
5f822d2
a695f59
5f822d2
a695f59
 
 
 
 
 
 
 
 
5f822d2
7a19e2b
 
 
 
 
 
a695f59
5f822d2
 
 
 
a695f59
 
 
 
 
 
 
7a19e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
---
language:
- en
license: mit
library_name: transformers
tags:
- nlp
- phi
- phi-2
- instruct
base_model:
- microsoft/phi-2
datasets:
- Open-Orca/SlimOrca
- prince-canuma/TinyOrca

model-index:
  - name: Damysus-2.7B-Chat
    results:
      - task:
          type: text-generation
        metrics:
          - name: Average
            type: Average
            value: 60.49
            verified: true
        source:
          name: Open LLM Leaderboard
          url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

      - task:
          type: text-generation
        dataset:
          name: ARC (25-shot)
          type: ai2_arc
        metrics:
          - name: Accuracy Norm
            type: acc_norm
            value: 59.81
            verified: true
        source:
          name: Open LLM Leaderboard
          url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

      - task:
          type: text-generation
        dataset:
          name: Hellaswag (10-shot)
          type: Hellaswag
        metrics:
          - name: Accuracy Norm
            type: acc
            value: 74.52
            verified: true
        source:
          name: Open LLM Leaderboard
          url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

      - task:
          type: text-generation     
        dataset:
          name: MMLU (5-shot)
          type: MMLU
        metrics:
          - name: Accuracy
            type: acc
            value: 56.33
            verified: true
        source:
          name: Open LLM Leaderboard
          url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

      - task:
          type: text-generation
        dataset:
          name: Truthful QA
          type: Truthful_QA
        metrics:
          - name: Multi-true
            type: mc2
            value: 46.74
            verified: true
        source:
          name: Open LLM Leaderboard
          url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

      - task:
          type: text-generation
        dataset:
          name: Winogrande (5-shot)
          type: Winogrande
        metrics:
          - name: Accuracy
            type: acc
            value: 75.06	
            verified: true
        source:
          name: Open LLM Leaderboard
          url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

      - task:
          type: text-generation
        dataset:
          name: GSM8K (5-shot)
          type: GSM8K
        metrics:
          - name: Accuracy
            type: acc
            value: 50.64
            verified: true
        source:
          name: Open LLM Leaderboard
          url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
---

# Model Summary
<img src="Damysus.png" width="500" alt="Damysus - the fastest giant"/>

<!-- Provide a quick summary of what the model is/does. -->
This model is a instruction-tuned version of Phi-2, a Transformer model with 2.7 billion parameters from Microsoft. 
The model has undergone further training to better follow specific user instructions, enhancing its ability to perform tasks as directed and improve its interaction with users. 
This additional training helps the model to understand context better, generate more accurate and relevant responses, and adapt to a wide range of language-based tasks such as:
- Questions and Answers,
- Data Extraction,
- Structured Outputs (i.e., JSON outputs),
- And providing explanations,

## Model Description

<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** [Prince Canuma](https://huggingface.co/prince-canuma)
- **Model type:** Transformer
- **License:** MIT
- **Finetuned from model:** microsoft/phi-2


## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

You can use this model to build local/cloud RAG applications.
It can serve as the:
- Answer synthesizer,
- Summarizer,
- Or query rewriter model.

### Limitations 

This model inherits some of the base model's limitations, such as:
- Generate Inaccurate Code and Facts: The model may produce incorrect code snippets and statements. Users should treat these outputs as suggestions or starting points, not as definitive or accurate solutions.
- Limited Scope for code: Majority of Phi-2 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses.
- Language Limitations: The model is primarily designed to understand standard English. Informal English, slang, or any other languages might pose challenges to its comprehension, leading to potential misinterpretations or errors in response.

## How to Get Started with the Model

Use the code below to get started with the model.

```python
from transformers import pipeline, Conversation

chatbot = pipeline("conversational", model="prince-canuma/Damysus-2.7B-Chat")
conversation = Conversation("I'm looking for a movie - what's your favourite one?")
output = chatbot(conversation)

print(output)
```

Or you can instatiate the model and tokenizer directly
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("prince-canuma/Damysus-2.7B-Chat")
model = AutoModelForCausalLM.from_pretrained("prince-canuma/Damysus-2.7B-Chat")

inputs = tokenizer.apply_chat_template(
    [
        {"content":"You are an helpful AI assistant","role":"system"},
        {"content":"I'm looking for a movie - what's your favourite one?","role":"user"},
    ], add_generation_prompt=True, return_tensors="pt",
).to("cuda")

outputs = model.generate(inputs, do_sample=False, max_new_tokens=256)

input_length = inputs.shape[1]
print(tokenizer.batch_decode(outputs[:, input_length:], skip_special_tokens=True)[0])
```

Output:
```shell
My favorite movie is "The Shawshank Redemption."

It's a powerful and inspiring story about hope, friendship, and redemption.
The performances by Tim Robbins and Morgan Freeman are exceptional,
and the film's themes and messages are timeless.

I highly recommend it to anyone who enjoys a well-crafted and emotionally engaging story.
```

### Structured Output
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("prince-canuma/Damysus-2.7B-Chat")
model = AutoModelForCausalLM.from_pretrained("prince-canuma/Damysus-2.7B-Chat")

inputs = tokenizer.apply_chat_template(
    [
        {"content":"You are a Robot that ONLY outputs JSON. Use this structure: {'entities': [{'type':..., 'name':...}]}.","role":"system"},
        {"content":""""Extract the entities of type 'technology' and 'file_type' in JSON format from the following passage: AI is a transformative
                      force in document processing employing technologies such as 'Machine Learning (ML), Natural Language Processing (NLP) and
                      Optical Character Recognition (OCR) to understand, interpret, and summarize text. These technologies enhance accuracy,
                      increase efficiency, and allow you and your company to process high volumes of data in short amount of time.
                      For instance, you can easily extract key points and summarize a large PDF document (i.e., 500 pages) in just a few seconds.""",
        "role":"user"},
    ], add_generation_prompt=True, return_tensors="pt",
).to("cuda")

outputs = model.generate(inputs, do_sample=False, max_new_tokens=256)

input_length = inputs.shape[1]
print(tokenizer.batch_decode(outputs[:, input_length:], skip_special_tokens=True)[0])
```

Output:
```json
{
  "entities": [
    {
      "type": "technology",
      "name": "Machine Learning (ML)"
    },
    {
      "type": "technology",
      "name": "Natural Language Processing (NLP)"
    },
    {
      "type": "technology",
      "name": "Optical Character Recognition (OCR)"
    },
    {
      "type": "file_type",
      "name": "PDF"
    },
  ]
}
```
## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
I used [SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca) dataset, a new curated subset of our OpenOrca data.
In the course of this study, the [SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca) dataset was used, representing a meticulously curated subset derived from the broader OpenOrca dataset.  This release provides an efficient means of reaching performance on-par with using larger slices of the [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca), while only including ~500k GPT-4 completions.

Subsequently, two distinct subsets were crafted, comprising 102,000 and 1,000 samples, denoted as:

- [prince-canuma/SmallOrca](https://huggingface.co/datasets/prince-canuma/SmallOrca)
- [prince-canuma/TinyOrca](https://huggingface.co/datasets/prince-canuma/TinyOrca)
  
Although experimentation was conducted with both datasets, optimal results were achieved through fine-tuning on a modest set of 200 samples. 
Notably, the investigation revealed that augmenting the training data beyond this threshold predominantly enhanced the model's proficiency in generating Chain-of-Thought responses. 
However, it is imperative to note that the preference for Chain-of-Thought responses may not be universally applicable. Particularly in scenarios like the RAG setup, 
succinct answers to prompts are often favored, especially for straightforward queries.

### Training Procedure

#### Preprocessing

1. Convert dataset to chatML format
2. Remove all samples with more than 2048 tokens (Phi-2 context size)
3. Mask instructions (System and User) at training time.

#### LoRA Config
  - **lora_alpha:** 128,
  - **lora_dropout:** 0.05,
  - **r:** 256,
  - **bias:** "none",
  - **target_modules:** "all-linear",
  - **task_type:** "CAUSAL_LM",

#### Training Hyperparameters

  - **Training regime:** bf16 mixed precision,  <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> 
  - **max_steps:** 100,
  - **per_device_train_batch_size:** 2,
  - **gradient_accumulation_steps:** 2,
  - **optim:** "adamw_torch_fused",
  - **learning_rate:** 2e-4,
  - **max_grad_norm:** 0.3,
  - **warmup_ratio:** 0.03,
  - **lr_scheduler_type:** "constant",

#### Trainer 
  - **max_seq_length:** 1744,
  - **data_collator:** DataCollatorForCompletionOnlyLM

## Evaluation

<img src="truthfulQA.png" width="800" alt="Damysus-2.7B-chat truthfulQA benchmark results"/>
<!-- This section describes the evaluation protocols and provides the results. -->

We evaluate models on 7 key benchmarks using the Eleuther AI Language Model Evaluation Harness , a unified framework to test generative language models on a large number of different evaluation tasks.

- AI2 Reasoning Challenge (25-shot) - a set of grade-school science questions.
- HellaSwag (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
- MMLU (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
- TruthfulQA (0-shot) - a test to measure a model's propensity to reproduce falsehoods commonly found online. Note: TruthfulQA is technically a 6-shot task in the Harness because each example is prepended with 6 Q/A pairs, even in the 0-shot setting.
- Winogrande (5-shot) - an adversarial and difficult Winograd benchmark at scale, for commonsense reasoning.
- GSM8k (5-shot) - diverse grade school math word problems to measure a model's ability to solve multi-step mathematical reasoning problems.
For all these evaluations, a higher score is a better score. We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.

Read more [here](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).

### Results

| Model | AVG | ARC | Hellaswag | MMLU | Truthful QA | Winogrande | GSM8K |
|-------|--------:|------:|----------:|-----:|----------:|----------:|----------:|
| [NousResearch/Nous-Puffin-70B](NousResearch/Nous-Puffin-70B) | 64.91 | 67.41 | 87.37 | 69.77 | 46.77 | 83.9 | 34.27 |
| [TheBloke/Llama-2-70B-fp16](https://huggingface.co/TheBloke/Llama-2-70B-fp16) | 64.52 | 67.32 | 87.33 | 69.83 | 44.92 | 83.74 | 33.97 |
| [NousResearch/Yarn-Mistral-7B-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 59.63 | 59.9 | 82.51 | 62.96 | 41.86 | 77.27 | 33.28 |
| [Qwen1.5-4B-Chat](https://huggingface.co/Qwen/Qwen1.5-4B-Chat) | 46.79 | 43.26 | 69.73 | 55.55 | 44.79 | 64.96 | 2.43 |
| [Microsoft/phi-2](https://huggingface.co/microsoft/phi-2) | 61.33 | 61.09 | 75.11 | 58.11 | 44.47 | 74.35 | 54.81 |
| [Damysus-2.7B-Chat](https://huggingface.co/prince-canuma/Damysus-2.7B-Chat) (Ours) | 60.49 | 59.81 | 74.52 | 56.33 | **46.74** | **75.06** | 50.64 |


## Technical Specifications

### Compute Infrastructure

- Modal Labs

#### Hardware

- OS: Linux
- GPU: A10G

#### Libraries

- TRL
- Transformers
- PEFT
- Datasets
- Accelerate
- torch
- Wandb
- Bitsandbytes
- Plotly

## Future work

I plan to explore the following tuning setups:
- Function calling
- DPO

## Citation 

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**
```bibtex
@misc{Damysus-2.7B-Chat,
      title={Damysus-2.7B-Chat} , 
      author={Prince Canuma},
      year={2024},
}
```
```bibtex
@misc{SlimOrca,
  title = {SlimOrca: An Open Dataset of GPT-4 Augmented FLAN Reasoning Traces, with Verification},
  author = {Wing Lian and Guan Wang and Bleys Goodson and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
  year = {2023},
  publisher = {HuggingFace},
  url = {https://https://huggingface.co/Open-Orca/SlimOrca}
}
```
```bibtex
@misc{open-llm-leaderboard,
  author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf},
  title = {Open LLM Leaderboard},
  year = {2023},
  publisher = {Hugging Face},
  howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
}
```