prince-canuma commited on
Commit
0157509
1 Parent(s): 1ee1e0c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -153
README.md CHANGED
@@ -1,201 +1,169 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
 
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
- ## How to Get Started with the Model
 
 
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
 
 
 
 
 
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
 
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
 
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
87
 
88
- #### Preprocessing [optional]
 
89
 
90
- [More Information Needed]
91
 
 
 
 
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
 
 
201
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - fr
5
+ - it
6
+ - de
7
+ - es
8
+ - en
9
+ inference:
10
+ parameters:
11
+ temperature: 0.5
12
+ widget:
13
+ - messages:
14
+ - role: user
15
+ content: What is your favorite condiment?
16
  ---
17
+ # Model Card for Mixtral-8x22B-Instruct-v0.1-4bit
18
+ The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks we tested.
19
 
20
+ Model added by [Prince Canuma](https://twitter.com/Prince_Canuma).
21
 
22
+ For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/).
23
 
24
+ ## Warning
25
+ This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF.
26
 
27
+ ## Instruction format
28
 
29
+ This format must be strictly respected, otherwise the model will generate sub-optimal outputs.
30
 
31
+ The template used to build a prompt for the Instruct model is defined as follows:
32
+ ```
33
+ <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST]
34
+ ```
35
+ Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings.
36
 
37
+ As reference, here is the pseudo-code used to tokenize instructions during fine-tuning:
38
+ ```python
39
+ def tokenize(text):
40
+ return tok.encode(text, add_special_tokens=False)
41
 
42
+ [BOS_ID] +
43
+ tokenize("[INST]") + tokenize(USER_MESSAGE_1) + tokenize("[/INST]") +
44
+ tokenize(BOT_MESSAGE_1) + [EOS_ID] +
45
+
46
+ tokenize("[INST]") + tokenize(USER_MESSAGE_N) + tokenize("[/INST]") +
47
+ tokenize(BOT_MESSAGE_N) + [EOS_ID]
48
+ ```
49
 
50
+ In the pseudo-code above, note that the `tokenize` method should not add a BOS or EOS token automatically, but should add a prefix space.
 
 
 
 
 
 
51
 
52
+ In the Transformers library, one can use [chat templates](https://huggingface.co/docs/transformers/main/en/chat_templating) which make sure the right format is applied.
53
 
54
+ ## Run the model
55
 
56
+ ```python
57
+ from transformers import AutoModelForCausalLM, AutoTokenizer
 
58
 
59
+ model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
60
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
61
 
62
+ model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
63
 
64
+ messages = [
65
+ {"role": "user", "content": "What is your favourite condiment?"},
66
+ {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
67
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
68
+ ]
69
 
70
+ inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
71
 
72
+ outputs = model.generate(inputs, max_new_tokens=20)
73
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
74
+ ```
75
 
76
+ By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:
77
 
78
+ ### In half-precision
79
 
80
+ Note `float16` precision only works on GPU devices
81
 
82
+ <details>
83
+ <summary> Click to expand </summary>
84
 
85
+ ```diff
86
+ + import torch
87
+ from transformers import AutoModelForCausalLM, AutoTokenizer
88
 
89
+ model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
90
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
91
 
92
+ + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
93
 
94
+ messages = [
95
+ {"role": "user", "content": "What is your favourite condiment?"},
96
+ {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
97
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
98
+ ]
99
 
100
+ input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
101
 
102
+ outputs = model.generate(input_ids, max_new_tokens=20)
103
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
104
+ ```
105
+ </details>
106
 
107
+ ### Lower precision using (8-bit & 4-bit) using `bitsandbytes`
108
 
109
+ <details>
110
+ <summary> Click to expand </summary>
111
 
112
+ ```diff
113
+ + import torch
114
+ from transformers import AutoModelForCausalLM, AutoTokenizer
115
 
116
+ model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
117
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
118
 
119
+ + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto")
120
 
121
+ text = "Hello my name is"
122
+ messages = [
123
+ {"role": "user", "content": "What is your favourite condiment?"},
124
+ {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
125
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
126
+ ]
127
 
128
+ input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
129
 
130
+ outputs = model.generate(input_ids, max_new_tokens=20)
131
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
132
+ ```
133
+ </details>
134
 
135
+ ### Load the model with Flash Attention 2
136
 
137
+ <details>
138
+ <summary> Click to expand </summary>
139
 
140
+ ```diff
141
+ + import torch
142
+ from transformers import AutoModelForCausalLM, AutoTokenizer
143
 
144
+ model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
145
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
146
 
147
+ + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True, device_map="auto")
148
 
149
+ messages = [
150
+ {"role": "user", "content": "What is your favourite condiment?"},
151
+ {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
152
+ {"role": "user", "content": "Do you have mayonnaise recipes?"}
153
+ ]
154
 
155
+ input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
156
 
157
+ outputs = model.generate(input_ids, max_new_tokens=20)
158
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
159
+ ```
160
+ </details>
161
 
162
+ ## Limitations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
 
164
+ The Mixtral-8x7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
165
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
166
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
167
 
168
+ # The Mistral AI Team
169
+ Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.