prithivMLmods commited on
Commit
3a85dee
·
verified ·
1 Parent(s): 13dc398

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -1
README.md CHANGED
@@ -16,7 +16,9 @@ tags:
16
  - text-generation-inference
17
  - safetensors
18
  ---
19
- ### Acrux-500M-o1-Journey Model Files:
 
 
20
 
21
  | **File Name** | **Size** | **Description** | **Upload Status** |
22
  |----------------------------|----------------|-------------------------------------------|--------------------|
@@ -32,4 +34,62 @@ tags:
32
  | `tokenizer_config.json` | 7.73 kB | Additional tokenizer settings. | Uploaded |
33
  | `vocab.json` | 2.78 MB | Vocabulary for the tokenizer. | Uploaded |
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  ---
 
16
  - text-generation-inference
17
  - safetensors
18
  ---
19
+ ### Acrux-500M-o1-Journey Model Files
20
+
21
+ The **Acrux-500M-o1-Journey** is a lightweight, instruction-tuned language model fine-tuned from the **Qwen2.5-0.5B-Instruct** base model. With a size of 500 million parameters, it is designed for **cost-effective deployment** and **fast text generation** while maintaining quality performance for instruction-following tasks.
22
 
23
  | **File Name** | **Size** | **Description** | **Upload Status** |
24
  |----------------------------|----------------|-------------------------------------------|--------------------|
 
34
  | `tokenizer_config.json` | 7.73 kB | Additional tokenizer settings. | Uploaded |
35
  | `vocab.json` | 2.78 MB | Vocabulary for the tokenizer. | Uploaded |
36
 
37
+ ---
38
+ ### **Key Features:**
39
+
40
+ 1. **Compact Size with Efficient Performance:**
41
+ The smaller parameter count (500M) ensures faster inference and reduced hardware requirements.
42
+
43
+ 2. **Instruction Optimization:**
44
+ Fine-tuned to follow prompts effectively, making it suitable for interactive applications and prompt-based tasks.
45
+
46
+ 3. **Domain-Specific Training:**
47
+ Trained on the **GAIR/o1-journey** dataset, providing tailored capabilities for specific use cases.
48
+
49
+ ---
50
+
51
+ ### **Training Details:**
52
+ - **Base Model:** [Qwen2.5-0.5B-Instruct](#)
53
+ - **Dataset Used for Fine-Tuning:** [GAIR/o1-journey](#)
54
+ - A compact dataset focusing on instruction-driven generation with 1.42k samples.
55
+
56
+ ---
57
+ ### **Capabilities:**
58
+
59
+ 1. **Instruction Following:**
60
+ - Generates accurate and coherent responses to user instructions.
61
+ - Handles summarization, question-answering, and conversational tasks.
62
+
63
+ 2. **Fast Inference:**
64
+ - Ideal for real-time applications due to reduced latency from its smaller size.
65
+
66
+ 3. **Interactive AI Development:**
67
+ - Suitable for chatbots, virtual assistants, and instructional interfaces.
68
+
69
+ ---
70
+ ### **Usage Instructions:**
71
+
72
+ 1. **Setup:**
73
+ Download all model files, ensuring compatibility with the Hugging Face Transformers library.
74
+
75
+ 2. **Loading the Model:**
76
+ ```python
77
+ from transformers import AutoModelForCausalLM, AutoTokenizer
78
+
79
+ model_name = "prithivMLmods/Acrux-500M-o1-Journey"
80
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
81
+ model = AutoModelForCausalLM.from_pretrained(model_name)
82
+ ```
83
+ 3. **Sample Generate Text:**
84
+ ```python
85
+ input_text = "Explain the concept of machine learning in simple terms."
86
+ inputs = tokenizer(input_text, return_tensors="pt")
87
+ outputs = model.generate(**inputs, max_length=100, temperature=0.7)
88
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
89
+ ```
90
+ 4. **Optimize Generation:**
91
+ Adjust parameters in `generation_config.json` for better control of output, such as:
92
+ - `temperature` for randomness.
93
+ - `top_p` for sampling diversity.
94
+ - `max_length` for output size.
95
  ---