prithivMLmods commited on
Commit
4333b8e
·
verified ·
1 Parent(s): e44f411

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -1
README.md CHANGED
@@ -9,4 +9,69 @@ library_name: transformers
9
  tags:
10
  - deepfake
11
  - detection
12
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  tags:
10
  - deepfake
11
  - detection
12
+ ---
13
+ # **Deepfake-Detect-Siglip2**
14
+
15
+ **Deepfake-Detect-Siglip2** is an image classification vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for a single-label classification task. It is designed to detect whether an image is real or a deepfake using the SiglipForImageClassification architecture.
16
+
17
+ The model categorizes images into two classes:
18
+ - **Class 0:** "Fake" – The image is detected as a deepfake or manipulated.
19
+ - **Class 1:** "Real" – The image is classified as authentic and unaltered.
20
+
21
+ # **Run with Transformers🤗**
22
+
23
+ ```python
24
+ !pip install -q transformers torch pillow gradio
25
+ ```
26
+
27
+ ```python
28
+ import gradio as gr
29
+ from transformers import AutoImageProcessor
30
+ from transformers import SiglipForImageClassification
31
+ from transformers.image_utils import load_image
32
+ from PIL import Image
33
+ import torch
34
+
35
+ # Load model and processor
36
+ model_name = "prithivMLmods/Deepfake-Detect-Siglip2"
37
+ model = SiglipForImageClassification.from_pretrained(model_name)
38
+ processor = AutoImageProcessor.from_pretrained(model_name)
39
+
40
+ def deepfake_detection(image):
41
+ """Classifies an image as Fake or Real."""
42
+ image = Image.fromarray(image).convert("RGB")
43
+ inputs = processor(images=image, return_tensors="pt")
44
+
45
+ with torch.no_grad():
46
+ outputs = model(**inputs)
47
+ logits = outputs.logits
48
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
49
+
50
+ labels = model.config.id2label
51
+ predictions = {labels[i]: round(probs[i], 3) for i in range(len(probs))}
52
+
53
+ return predictions
54
+
55
+ # Create Gradio interface
56
+ iface = gr.Interface(
57
+ fn=deepfake_detection,
58
+ inputs=gr.Image(type="numpy"),
59
+ outputs=gr.Label(label="Detection Result"),
60
+ title="Deepfake Detection Model",
61
+ description="Upload an image to determine if it is Fake or Real."
62
+ )
63
+
64
+ # Launch the app
65
+ if __name__ == "__main__":
66
+ iface.launch()
67
+ ```
68
+
69
+ # **Intended Use:**
70
+
71
+ The **Deepfake-Detect-Siglip2** model is designed to distinguish between **real and fake (deepfake) images**. It is useful for identifying AI-generated or manipulated content.
72
+
73
+ ### Potential Use Cases:
74
+ - **Deepfake Detection:** Identifying AI-generated fake images.
75
+ - **Content Verification:** Assisting social media platforms in filtering manipulated content.
76
+ - **Forensic Analysis:** Supporting cybersecurity and investigative research on fake media.
77
+ - **Media Authenticity Checks:** Helping journalists and fact-checkers verify image credibility.