prithivMLmods commited on
Commit
67e8477
Β·
verified Β·
1 Parent(s): 8cbb16e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - prithivMLmods/Deepfake-vs-Real
5
+ language:
6
+ - en
7
+ pipeline_tag: image-classification
8
+ library_name: transformers
9
+ tags:
10
+ - Deepfake
11
+ base_model:
12
+ - prithivMLmods/Deepfake-Detection-Exp-02-22
13
+ ---
14
+ # **Deepfake-Detection-Exp-02-22-ONNX**
15
+
16
+ Deepfake-Detection-Exp-02-22 is a minimalist, high-quality dataset trained on a ViT-based model for image classification, distinguishing between deepfake and real images. The model is based on Google's **`google/vit-base-patch32-224-in21k`**.
17
+
18
+ ```bitex
19
+ Mapping of IDs to Labels: {0: 'Deepfake', 1: 'Real'}
20
+
21
+ Mapping of Labels to IDs: {'Deepfake': 0, 'Real': 1}
22
+ ```
23
+
24
+ ```python
25
+ Classification report:
26
+
27
+ precision recall f1-score support
28
+
29
+ Deepfake 0.9833 0.9187 0.9499 1600
30
+ Real 0.9238 0.9844 0.9531 1600
31
+
32
+ accuracy 0.9516 3200
33
+ macro avg 0.9535 0.9516 0.9515 3200
34
+ weighted avg 0.9535 0.9516 0.9515 3200
35
+ ```
36
+
37
+
38
+ ![download (1).png](https://cdn-uploads.huggingface.co/production/uploads/6720824b15b6282a2464fc58/-25Oh3wureg_MI4nvjh7w.png)
39
+
40
+ # **Inference with Hugging Face Pipeline**
41
+ ```python
42
+ from transformers import pipeline
43
+
44
+ # Load the model
45
+ pipe = pipeline('image-classification', model="prithivMLmods/Deepfake-Detection-Exp-02-22", device=0)
46
+
47
+ # Predict on an image
48
+ result = pipe("path_to_image.jpg")
49
+ print(result)
50
+ ```
51
+
52
+ # **Inference with PyTorch**
53
+ ```python
54
+ from transformers import ViTForImageClassification, ViTImageProcessor
55
+ from PIL import Image
56
+ import torch
57
+
58
+ # Load the model and processor
59
+ model = ViTForImageClassification.from_pretrained("prithivMLmods/Deepfake-Detection-Exp-02-22")
60
+ processor = ViTImageProcessor.from_pretrained("prithivMLmods/Deepfake-Detection-Exp-02-22")
61
+
62
+ # Load and preprocess the image
63
+ image = Image.open("path_to_image.jpg").convert("RGB")
64
+ inputs = processor(images=image, return_tensors="pt")
65
+
66
+ # Perform inference
67
+ with torch.no_grad():
68
+ outputs = model(**inputs)
69
+ logits = outputs.logits
70
+ predicted_class = torch.argmax(logits, dim=1).item()
71
+
72
+ # Map class index to label
73
+ label = model.config.id2label[predicted_class]
74
+ print(f"Predicted Label: {label}")
75
+ ```
76
+
77
+ # **Limitations**
78
+ 1. **Generalization Issues** – The model may not perform well on deepfake images generated by unseen or novel deepfake techniques.
79
+ 2. **Dataset Bias** – The training data might not cover all variations of real and fake images, leading to biased predictions.
80
+ 3. **Resolution Constraints** – Since the model is based on `vit-base-patch32-224-in21k`, it is optimized for 224x224 image resolution, which may limit its effectiveness on high-resolution images.
81
+ 4. **Adversarial Vulnerabilities** – The model may be susceptible to adversarial attacks designed to fool vision transformers.
82
+ 5. **False Positives & False Negatives** – The model may occasionally misclassify real images as deepfake and vice versa, requiring human validation in critical applications.
83
+
84
+ # **Intended Use**
85
+ 1. **Deepfake Detection** – Designed for identifying deepfake images in media, social platforms, and forensic analysis.
86
+ 2. **Research & Development** – Useful for researchers studying deepfake detection and improving ViT-based classification models.
87
+ 3. **Content Moderation** – Can be integrated into platforms to detect and flag manipulated images.
88
+ 4. **Security & Forensics** – Assists in cybersecurity applications where verifying the authenticity of images is crucial.
89
+ 5. **Educational Purposes** – Can be used in training AI practitioners and students in the field of computer vision and deepfake detection.