prithivMLmods commited on
Commit
8d1d0fc
·
verified ·
1 Parent(s): fb4f131

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md CHANGED
@@ -1,6 +1,10 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
4
  ```py
5
  Accuracy: 0.9720
6
  F1 Score: 0.9720
@@ -17,3 +21,64 @@ weighted avg 0.9721 0.9720 0.9720 5000
17
  ```
18
 
19
  ![Untitled.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/MNO7bk_1wr5lvfyTDnhjF.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ # **Gender-Classifier-Mini**
5
+
6
+ > **Gender-Classifier-Mini** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images based on gender using the **SiglipForImageClassification** architecture.
7
+
8
  ```py
9
  Accuracy: 0.9720
10
  F1 Score: 0.9720
 
21
  ```
22
 
23
  ![Untitled.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/MNO7bk_1wr5lvfyTDnhjF.png)
24
+
25
+ The model categorizes images into two classes:
26
+ - **Class 0:** "Female ♀"
27
+ - **Class 1:** "Male ♂"
28
+
29
+ # **Run with Transformers🤗**
30
+
31
+ ```python
32
+ !pip install -q transformers torch pillow gradio
33
+ ```
34
+
35
+ ```python
36
+ import gradio as gr
37
+ from transformers import AutoImageProcessor
38
+ from transformers import SiglipForImageClassification
39
+ from transformers.image_utils import load_image
40
+ from PIL import Image
41
+ import torch
42
+
43
+ # Load model and processor
44
+ model_name = "prithivMLmods/Gender-Classifier-Mini"
45
+ model = SiglipForImageClassification.from_pretrained(model_name)
46
+ processor = AutoImageProcessor.from_pretrained(model_name)
47
+
48
+ def gender_classification(image):
49
+ """Predicts gender category for an image."""
50
+ image = Image.fromarray(image).convert("RGB")
51
+ inputs = processor(images=image, return_tensors="pt")
52
+
53
+ with torch.no_grad():
54
+ outputs = model(**inputs)
55
+ logits = outputs.logits
56
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
57
+
58
+ labels = {"0": "Female ♀", "1": "Male ♂"}
59
+ predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
60
+
61
+ return predictions
62
+
63
+ # Create Gradio interface
64
+ iface = gr.Interface(
65
+ fn=gender_classification,
66
+ inputs=gr.Image(type="numpy"),
67
+ outputs=gr.Label(label="Prediction Scores"),
68
+ title="Gender Classification",
69
+ description="Upload an image to classify its gender."
70
+ )
71
+
72
+ # Launch the app
73
+ if __name__ == "__main__":
74
+ iface.launch()
75
+ ```
76
+
77
+ # **Intended Use:**
78
+
79
+ The **Gender-Classifier-Mini** model is designed to classify images into gender categories. Potential use cases include:
80
+
81
+ - **Demographic Analysis:** Assisting in understanding gender distribution in datasets.
82
+ - **Face Recognition Systems:** Enhancing identity verification processes.
83
+ - **Marketing & Advertising:** Personalizing content based on demographic insights.
84
+ - **Healthcare & Research:** Supporting gender-based analysis in medical imaging.