prithivMLmods commited on
Commit
497e6b0
·
verified ·
1 Parent(s): 156f95c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -3
README.md CHANGED
@@ -1,3 +1,56 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - andersonbcdefg/supernatural-instructions-2m
5
+ language:
6
+ - en
7
+ base_model:
8
+ - Qwen/Qwen2.5-3B-Instruct
9
+ pipeline_tag: text-generation
10
+ library_name: transformers
11
+ tags:
12
+ - SuperNatural
13
+ - QwQ
14
+ ---
15
+ # **QwQ-SuperNatural-3B**
16
+
17
+ QwQ-SuperNatural-3B is a Qwen2.5-based supernatural model designed to provide context-based supernatural responses from the input it receives. It has 3 billion parameters and is a domain-specific, supervised fine-tuned model. The model demonstrates significant improvements in instruction following, generating long texts (over 8K tokens), understanding structured data (e.g., tables), and generating structured outputs, especially in JSON format. It is also more resilient to the diversity of system prompts, enhancing role-play implementation and condition-setting for chatbots.
18
+
19
+ # **Quickstart with Transformers**
20
+
21
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
22
+
23
+ ```python
24
+ from transformers import AutoModelForCausalLM, AutoTokenizer
25
+
26
+ model_name = "prithivMLmods/QwQ-SuperNatural-3B"
27
+
28
+ model = AutoModelForCausalLM.from_pretrained(
29
+ model_name,
30
+ torch_dtype="auto",
31
+ device_map="auto"
32
+ )
33
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
34
+
35
+ prompt = "Give me a short introduction to large language model."
36
+ messages = [
37
+ {"role": "system", "content": "You are an Super Natural Bot, You are a helpful assistant."},
38
+ {"role": "user", "content": prompt}
39
+ ]
40
+ text = tokenizer.apply_chat_template(
41
+ messages,
42
+ tokenize=False,
43
+ add_generation_prompt=True
44
+ )
45
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
46
+
47
+ generated_ids = model.generate(
48
+ **model_inputs,
49
+ max_new_tokens=512
50
+ )
51
+ generated_ids = [
52
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
53
+ ]
54
+
55
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
56
+ ```