prithivMLmods commited on
Commit
78ad9e0
·
verified ·
1 Parent(s): f16316f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +130 -1
README.md CHANGED
@@ -6,4 +6,133 @@ base_model:
6
  - Qwen/Qwen2-VL-2B-Instruct
7
  pipeline_tag: image-text-to-text
8
  library_name: transformers
9
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  - Qwen/Qwen2-VL-2B-Instruct
7
  pipeline_tag: image-text-to-text
8
  library_name: transformers
9
+ ---
10
+ # Qwen2-VL-Math-Prase-2B-Instruct [ Math EQU]
11
+
12
+ ![2.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/-8Nqso3LQX2QuvU3TIeJ4.png)
13
+
14
+ The **Qwen2-VL-Math-Prase-2B-Instruct** model is a fine-tuned version of **Qwen/Qwen2-VL-2B-Instruct**, tailored for tasks that involve **Optical Character Recognition (OCR)**, **image-to-text conversion**, and **math problem solving with LaTeX formatting**. This model integrates a conversational approach with visual and textual understanding to handle multi-modal tasks effectively.
15
+
16
+ #### Key Enhancements:
17
+
18
+ * **SoTA understanding of images of various resolution & ratio**: Qwen2-VL achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc.
19
+
20
+ * **Understanding videos of 20min+**: Qwen2-VL can understand videos over 20 minutes for high-quality video-based question answering, dialog, content creation, etc.
21
+
22
+ * **Agent that can operate your mobiles, robots, etc.**: with the abilities of complex reasoning and decision making, Qwen2-VL can be integrated with devices like mobile phones, robots, etc., for automatic operation based on visual environment and text instructions.
23
+
24
+ * **Multilingual Support**: to serve global users, besides English and Chinese, Qwen2-VL now supports the understanding of texts in different languages inside images, including most European languages, Japanese, Korean, Arabic, Vietnamese, etc.
25
+
26
+ | **File Name** | **Size** | **Description** | **Upload Status** |
27
+ |---------------------------|------------|------------------------------------------------|-------------------|
28
+ | `.gitattributes` | 1.52 kB | Configures LFS tracking for specific model files. | Initial commit |
29
+ | `README.md` | 203 Bytes | Minimal details about the uploaded model. | Updated |
30
+ | `added_tokens.json` | 408 Bytes | Additional tokens used by the model tokenizer. | Uploaded |
31
+ | `chat_template.json` | 1.05 kB | Template for chat-based model input/output. | Uploaded |
32
+ | `config.json` | 1.24 kB | Model configuration metadata. | Uploaded |
33
+ | `generation_config.json` | 252 Bytes | Configuration for text generation settings. | Uploaded |
34
+ | `merges.txt` | 1.82 MB | BPE merge rules for tokenization. | Uploaded |
35
+ | `model.safetensors` | 4.42 GB | Serialized model weights in a secure format. | Uploaded (LFS) |
36
+ | `preprocessor_config.json`| 596 Bytes | Preprocessing configuration for input data. | Uploaded |
37
+ | `vocab.json` | 2.78 MB | Vocabulary file for tokenization. | Uploaded |
38
+
39
+ ---
40
+ ### How to Use
41
+
42
+ ```python
43
+ from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
44
+ from qwen_vl_utils import process_vision_info
45
+
46
+ # default: Load the model on the available device(s)
47
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
48
+ "prithivMLmods/Qwen2-VL-Math-Prase-2B-Instruct", torch_dtype="auto", device_map="auto"
49
+ )
50
+
51
+ # We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
52
+ # model = Qwen2VLForConditionalGeneration.from_pretrained(
53
+ # "prithivMLmods/Qwen2-VL-Math-Prase-2B-Instruct",
54
+ # torch_dtype=torch.bfloat16,
55
+ # attn_implementation="flash_attention_2",
56
+ # device_map="auto",
57
+ # )
58
+
59
+ # default processer
60
+ processor = AutoProcessor.from_pretrained("prithivMLmods/Qwen2-VL-OCR-2B-Instruct")
61
+
62
+ # The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
63
+ # min_pixels = 256*28*28
64
+ # max_pixels = 1280*28*28
65
+ # processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
66
+
67
+ messages = [
68
+ {
69
+ "role": "user",
70
+ "content": [
71
+ {
72
+ "type": "image",
73
+ "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
74
+ },
75
+ {"type": "text", "text": "Describe this image."},
76
+ ],
77
+ }
78
+ ]
79
+
80
+ # Preparation for inference
81
+ text = processor.apply_chat_template(
82
+ messages, tokenize=False, add_generation_prompt=True
83
+ )
84
+ image_inputs, video_inputs = process_vision_info(messages)
85
+ inputs = processor(
86
+ text=[text],
87
+ images=image_inputs,
88
+ videos=video_inputs,
89
+ padding=True,
90
+ return_tensors="pt",
91
+ )
92
+ inputs = inputs.to("cuda")
93
+
94
+ # Inference: Generation of the output
95
+ generated_ids = model.generate(**inputs, max_new_tokens=128)
96
+ generated_ids_trimmed = [
97
+ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
98
+ ]
99
+ output_text = processor.batch_decode(
100
+ generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
101
+ )
102
+ print(output_text)
103
+ ```
104
+
105
+ ### **Key Features**
106
+
107
+ 1. **Vision-Language Integration:**
108
+ - Combines **image understanding** with **natural language processing** to convert images into text.
109
+
110
+ 2. **Optical Character Recognition (OCR):**
111
+ - Extracts and processes textual information from images with high accuracy.
112
+
113
+ 3. **Math and LaTeX Support:**
114
+ - Solves math problems and outputs equations in **LaTeX format**.
115
+
116
+ 4. **Conversational Capabilities:**
117
+ - Designed to handle **multi-turn interactions**, providing context-aware responses.
118
+
119
+ 5. **Image-Text-to-Text Generation:**
120
+ - Inputs can include **images, text, or a combination**, and the model generates descriptive or problem-solving text.
121
+
122
+ 6. **Secure Weight Format:**
123
+ - Uses **Safetensors** for faster and more secure model weight loading.
124
+
125
+ ---
126
+
127
+ ### **Training Details**
128
+
129
+ - **Base Model:** [Qwen/Qwen2-VL-2B-Instruct](#)
130
+ - **Model Size:**
131
+ - 2.21 Billion parameters
132
+ - Optimized for **BF16** tensor type, enabling efficient inference.
133
+
134
+ - **Specializations:**
135
+ - OCR tasks in images containing text.
136
+ - Mathematical reasoning and LaTeX output for equations.
137
+
138
+ ---