|
import gradio as gr
|
|
import spaces
|
|
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
|
from qwen_vl_utils import process_vision_info
|
|
import torch
|
|
from PIL import Image
|
|
import os
|
|
import uuid
|
|
import io
|
|
from threading import Thread
|
|
from reportlab.lib.pagesizes import A4
|
|
from reportlab.lib.styles import getSampleStyleSheet
|
|
from reportlab.lib import colors
|
|
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
|
|
from reportlab.lib.units import inch
|
|
from reportlab.pdfbase import pdfmetrics
|
|
from reportlab.pdfbase.ttfonts import TTFont
|
|
import docx
|
|
from docx.enum.text import WD_ALIGN_PARAGRAPH
|
|
|
|
|
|
MODEL_OPTIONS = {
|
|
"Qwen2VL Base": "Qwen/Qwen2-VL-2B-Instruct",
|
|
"Latex OCR": "prithivMLmods/Qwen2-VL-OCR-2B-Instruct",
|
|
"Math Prase": "prithivMLmods/Qwen2-VL-Math-Prase-2B-Instruct",
|
|
"Text Analogy Ocrtest": "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct"
|
|
}
|
|
|
|
|
|
models = {}
|
|
processors = {}
|
|
for name, model_id in MODEL_OPTIONS.items():
|
|
print(f"Loading {name}...")
|
|
models[name] = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
model_id,
|
|
trust_remote_code=True,
|
|
torch_dtype=torch.float16
|
|
).to("cuda").eval()
|
|
processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
|
|
|
image_extensions = Image.registered_extensions()
|
|
|
|
def identify_and_save_blob(blob_path):
|
|
"""Identifies if the blob is an image and saves it."""
|
|
try:
|
|
with open(blob_path, 'rb') as file:
|
|
blob_content = file.read()
|
|
try:
|
|
Image.open(io.BytesIO(blob_content)).verify()
|
|
extension = ".png"
|
|
media_type = "image"
|
|
except (IOError, SyntaxError):
|
|
raise ValueError("Unsupported media type. Please upload a valid image.")
|
|
|
|
filename = f"temp_{uuid.uuid4()}_media{extension}"
|
|
with open(filename, "wb") as f:
|
|
f.write(blob_content)
|
|
|
|
return filename, media_type
|
|
|
|
except FileNotFoundError:
|
|
raise ValueError(f"The file {blob_path} was not found.")
|
|
except Exception as e:
|
|
raise ValueError(f"An error occurred while processing the file: {e}")
|
|
|
|
@spaces.GPU
|
|
def qwen_inference(model_name, media_input, text_input=None):
|
|
"""Handles inference for the selected model."""
|
|
model = models[model_name]
|
|
processor = processors[model_name]
|
|
|
|
if isinstance(media_input, str):
|
|
media_path = media_input
|
|
if media_path.endswith(tuple([i for i in image_extensions.keys()])):
|
|
media_type = "image"
|
|
else:
|
|
try:
|
|
media_path, media_type = identify_and_save_blob(media_input)
|
|
except Exception as e:
|
|
raise ValueError("Unsupported media type. Please upload a valid image.")
|
|
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": media_type,
|
|
media_type: media_path
|
|
},
|
|
{"type": "text", "text": text_input},
|
|
],
|
|
}
|
|
]
|
|
|
|
text = processor.apply_chat_template(
|
|
messages, tokenize=False, add_generation_prompt=True
|
|
)
|
|
image_inputs, _ = process_vision_info(messages)
|
|
inputs = processor(
|
|
text=[text],
|
|
images=image_inputs,
|
|
padding=True,
|
|
return_tensors="pt",
|
|
).to("cuda")
|
|
|
|
streamer = TextIteratorStreamer(
|
|
processor.tokenizer, skip_prompt=True, skip_special_tokens=True
|
|
)
|
|
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
|
thread.start()
|
|
|
|
buffer = ""
|
|
for new_text in streamer:
|
|
buffer += new_text
|
|
|
|
buffer = buffer.replace("<|im_end|>", "")
|
|
yield buffer
|
|
|
|
def format_plain_text(output_text):
|
|
"""Formats the output text as plain text without LaTeX delimiters."""
|
|
|
|
plain_text = output_text.replace("\\(", "").replace("\\)", "").replace("\\[", "").replace("\\]", "")
|
|
return plain_text
|
|
|
|
def generate_document(media_path, output_text, file_format, font_choice, font_size, line_spacing, alignment, image_size):
|
|
"""Generates a document with the input image and plain text output."""
|
|
plain_text = format_plain_text(output_text)
|
|
if file_format == "pdf":
|
|
return generate_pdf(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size)
|
|
elif file_format == "docx":
|
|
return generate_docx(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size)
|
|
|
|
def generate_pdf(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size):
|
|
"""Generates a PDF document."""
|
|
filename = f"output_{uuid.uuid4()}.pdf"
|
|
doc = SimpleDocTemplate(
|
|
filename,
|
|
pagesize=A4,
|
|
rightMargin=inch,
|
|
leftMargin=inch,
|
|
topMargin=inch,
|
|
bottomMargin=inch
|
|
)
|
|
styles = getSampleStyleSheet()
|
|
styles["Normal"].fontName = font_choice
|
|
styles["Normal"].fontSize = int(font_size)
|
|
styles["Normal"].leading = int(font_size) * line_spacing
|
|
styles["Normal"].alignment = {
|
|
"Left": 0,
|
|
"Center": 1,
|
|
"Right": 2,
|
|
"Justified": 4
|
|
}[alignment]
|
|
|
|
|
|
font_path = f"font/{font_choice}"
|
|
pdfmetrics.registerFont(TTFont(font_choice, font_path))
|
|
|
|
story = []
|
|
|
|
|
|
image_sizes = {
|
|
"Small": (200, 200),
|
|
"Medium": (400, 400),
|
|
"Large": (600, 600)
|
|
}
|
|
img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1])
|
|
story.append(img)
|
|
story.append(Spacer(1, 12))
|
|
|
|
|
|
text = Paragraph(plain_text, styles["Normal"])
|
|
story.append(text)
|
|
|
|
doc.build(story)
|
|
return filename
|
|
|
|
def generate_docx(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size):
|
|
"""Generates a DOCX document."""
|
|
filename = f"output_{uuid.uuid4()}.docx"
|
|
doc = docx.Document()
|
|
|
|
|
|
image_sizes = {
|
|
"Small": docx.shared.Inches(2),
|
|
"Medium": docx.shared.Inches(4),
|
|
"Large": docx.shared.Inches(6)
|
|
}
|
|
doc.add_picture(media_path, width=image_sizes[image_size])
|
|
doc.add_paragraph()
|
|
|
|
|
|
paragraph = doc.add_paragraph()
|
|
paragraph.paragraph_format.line_spacing = line_spacing
|
|
paragraph.paragraph_format.alignment = {
|
|
"Left": WD_ALIGN_PARAGRAPH.LEFT,
|
|
"Center": WD_ALIGN_PARAGRAPH.CENTER,
|
|
"Right": WD_ALIGN_PARAGRAPH.RIGHT,
|
|
"Justified": WD_ALIGN_PARAGRAPH.JUSTIFY
|
|
}[alignment]
|
|
run = paragraph.add_run(plain_text)
|
|
run.font.name = font_choice
|
|
run.font.size = docx.shared.Pt(int(font_size))
|
|
|
|
doc.save(filename)
|
|
return filename
|
|
|
|
|
|
css = """
|
|
#output {
|
|
height: 500px;
|
|
overflow: auto;
|
|
border: 1px solid #ccc;
|
|
}
|
|
.submit-btn {
|
|
background-color: #cf3434 !important;
|
|
color: white !important;
|
|
}
|
|
.submit-btn:hover {
|
|
background-color: #ff2323 !important;
|
|
}
|
|
.download-btn {
|
|
background-color: #35a6d6 !important;
|
|
color: white !important;
|
|
}
|
|
.download-btn:hover {
|
|
background-color: #22bcff !important;
|
|
}
|
|
"""
|
|
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
gr.Markdown("# Qwen2VL Models: Vision and Language Processing")
|
|
|
|
with gr.Tab(label="Image Input"):
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
model_choice = gr.Dropdown(
|
|
label="Model Selection",
|
|
choices=list(MODEL_OPTIONS.keys()),
|
|
value="Latex OCR"
|
|
)
|
|
input_media = gr.File(
|
|
label="Upload Image", type="filepath"
|
|
)
|
|
text_input = gr.Textbox(label="Question", placeholder="Ask a question about the image...")
|
|
submit_btn = gr.Button(value="Submit", elem_classes="submit-btn")
|
|
|
|
with gr.Column():
|
|
output_text = gr.Textbox(label="Output Text", lines=10)
|
|
plain_text_output = gr.Textbox(label="Standardized Plain Text", lines=10)
|
|
|
|
submit_btn.click(
|
|
qwen_inference, [model_choice, input_media, text_input], [output_text]
|
|
).then(
|
|
lambda output_text: format_plain_text(output_text), [output_text], [plain_text_output]
|
|
)
|
|
|
|
|
|
with gr.Row():
|
|
gr.Examples(
|
|
examples=[
|
|
["examples/1.png", "summarize the letter", "Text Analogy Ocrtest"],
|
|
["examples/2.jpg", "Summarize the full image in detail", "Latex OCR"],
|
|
["examples/3.png", "Describe the photo", "Qwen2VL Base"],
|
|
["examples/4.png", "summarize and solve the problem", "Math Prase"],
|
|
],
|
|
inputs=[input_media, text_input, model_choice],
|
|
outputs=[output_text, plain_text_output],
|
|
fn=lambda img, question, model: qwen_inference(model, img, question),
|
|
cache_examples=False,
|
|
)
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
line_spacing = gr.Dropdown(
|
|
choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0],
|
|
value=1.5,
|
|
label="Line Spacing"
|
|
)
|
|
font_size = gr.Dropdown(
|
|
choices=["8", "10", "12", "14", "16", "18", "20", "22", "24"],
|
|
value="18",
|
|
label="Font Size"
|
|
)
|
|
font_choice = gr.Dropdown(
|
|
choices=[
|
|
"DejaVuMathTeXGyre.ttf",
|
|
"FiraCode-Medium.ttf",
|
|
"InputMono-Light.ttf",
|
|
"JetBrainsMono-Thin.ttf",
|
|
"ProggyCrossed Regular Mac.ttf",
|
|
"SourceCodePro-Black.ttf",
|
|
"arial.ttf",
|
|
"calibri.ttf",
|
|
"mukta-malar-extralight.ttf",
|
|
"noto-sans-arabic-medium.ttf",
|
|
"times new roman.ttf",
|
|
"ANGSA.ttf",
|
|
"Book-Antiqua.ttf",
|
|
"CONSOLA.TTF",
|
|
"COOPBL.TTF",
|
|
"Rockwell-Bold.ttf",
|
|
"Candara Light.TTF",
|
|
"Carlito-Regular.ttf Carlito-Regular.ttf",
|
|
"Castellar.ttf",
|
|
"Courier New.ttf",
|
|
"LSANS.TTF",
|
|
"Lucida Bright Regular.ttf",
|
|
"TRTempusSansITC.ttf",
|
|
"Verdana.ttf",
|
|
"bell-mt.ttf",
|
|
"eras-itc-light.ttf",
|
|
"fonnts.com-aptos-light.ttf",
|
|
"georgia.ttf",
|
|
"segoeuithis.ttf",
|
|
"youyuan.TTF",
|
|
"TfPonetoneExpanded-7BJZA.ttf",
|
|
],
|
|
value="youyuan.TTF",
|
|
label="Font Choice"
|
|
)
|
|
alignment = gr.Dropdown(
|
|
choices=["Left", "Center", "Right", "Justified"],
|
|
value="Justified",
|
|
label="Text Alignment"
|
|
)
|
|
image_size = gr.Dropdown(
|
|
choices=["Small", "Medium", "Large"],
|
|
value="Small",
|
|
label="Image Size"
|
|
)
|
|
file_format = gr.Radio(["pdf", "docx"], label="File Format", value="pdf")
|
|
get_document_btn = gr.Button(value="Get Document", elem_classes="download-btn")
|
|
|
|
get_document_btn.click(
|
|
generate_document, [input_media, output_text, file_format, font_choice, font_size, line_spacing, alignment, image_size], gr.File(label="Download Document")
|
|
)
|
|
|
|
demo.launch(debug=True) |