prithivMLmods commited on
Commit
f34ee51
·
verified ·
1 Parent(s): 31c6a7b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md CHANGED
@@ -19,6 +19,10 @@ tags:
19
  - street
20
  ---
21
 
 
 
 
 
22
  ```py
23
  Classification Report:
24
  precision recall f1-score support
@@ -36,3 +40,91 @@ weighted avg 0.9729 0.9728 0.9728 16345
36
  ```
37
 
38
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/oqlb8a1p6zJuNZSI9PgZO.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  - street
20
  ---
21
 
22
+ # open-scene-detection
23
+
24
+ > open-scene-detection is a vision-language encoder model fine-tuned from [`siglip2-base-patch16-512`](https://huggingface.co/google/siglip-base-patch16-512) for multi-class scene classification. It is trained to recognize and categorize natural and urban scenes using a curated visual dataset. The model uses the `SiglipForImageClassification` architecture.
25
+
26
  ```py
27
  Classification Report:
28
  precision recall f1-score support
 
40
  ```
41
 
42
  ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/oqlb8a1p6zJuNZSI9PgZO.png)
43
+
44
+ ---
45
+
46
+ ## Label Space: 6 Classes
47
+
48
+ The model classifies an image into one of the following scenes:
49
+
50
+ ```
51
+ Class 0: Buildings
52
+ Class 1: Forest
53
+ Class 2: Glacier
54
+ Class 3: Mountain
55
+ Class 4: Sea
56
+ Class 5: Street
57
+ ```
58
+
59
+ ---
60
+
61
+ ## Install Dependencies
62
+
63
+ ```bash
64
+ pip install -q transformers torch pillow gradio hf_xet
65
+ ```
66
+
67
+ ---
68
+
69
+ ## Inference Code
70
+
71
+ ```python
72
+ import gradio as gr
73
+ from transformers import AutoImageProcessor, SiglipForImageClassification
74
+ from PIL import Image
75
+ import torch
76
+
77
+ # Load model and processor
78
+ model_name = "prithivMLmods/open-scene-detection" # Updated model name
79
+ model = SiglipForImageClassification.from_pretrained(model_name)
80
+ processor = AutoImageProcessor.from_pretrained(model_name)
81
+
82
+ # Updated label mapping
83
+ id2label = {
84
+ "0": "Buildings",
85
+ "1": "Forest",
86
+ "2": "Glacier",
87
+ "3": "Mountain",
88
+ "4": "Sea",
89
+ "5": "Street"
90
+ }
91
+
92
+ def classify_image(image):
93
+ image = Image.fromarray(image).convert("RGB")
94
+ inputs = processor(images=image, return_tensors="pt")
95
+
96
+ with torch.no_grad():
97
+ outputs = model(**inputs)
98
+ logits = outputs.logits
99
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
100
+
101
+ prediction = {
102
+ id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
103
+ }
104
+
105
+ return prediction
106
+
107
+ # Gradio Interface
108
+ iface = gr.Interface(
109
+ fn=classify_image,
110
+ inputs=gr.Image(type="numpy"),
111
+ outputs=gr.Label(num_top_classes=6, label="Scene Classification"),
112
+ title="open-scene-detection",
113
+ description="Upload an image to classify the scene into one of six categories: Buildings, Forest, Glacier, Mountain, Sea, or Street."
114
+ )
115
+
116
+ if __name__ == "__main__":
117
+ iface.launch()
118
+ ```
119
+
120
+ ---
121
+
122
+ ## Intended Use
123
+
124
+ `open-scene-detection` is designed for:
125
+
126
+ * **Scene Recognition** – Automatically classify natural and urban scenes.
127
+ * **Environmental Mapping** – Support geographic and ecological analysis from visual data.
128
+ * **Dataset Annotation** – Efficiently label large-scale image datasets by scene.
129
+ * **Visual Search and Organization** – Enable smart scene-based filtering or retrieval.
130
+ * **Autonomous Systems** – Assist navigation and perception modules with scene understanding.