priyankloco
commited on
Commit
·
1d044aa
1
Parent(s):
da08599
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: resnet-152-finetuned_resnet152-adam-optimizere-2-autotags
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.8980952380952381
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# resnet-152-finetuned_resnet152-adam-optimizere-2-autotags
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [microsoft/resnet-152](https://huggingface.co/microsoft/resnet-152) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.4368
|
35 |
+
- Accuracy: 0.8981
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.01
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 16
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 64
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 20
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 1.4424 | 0.99 | 65 | 1.7123 | 0.56 |
|
70 |
+
| 1.6053 | 1.99 | 130 | 2.0613 | 0.3152 |
|
71 |
+
| 1.3795 | 2.99 | 195 | 1.3791 | 0.5552 |
|
72 |
+
| 0.9701 | 3.99 | 260 | 0.9195 | 0.7038 |
|
73 |
+
| 0.8258 | 4.99 | 325 | 0.9107 | 0.7067 |
|
74 |
+
| 0.7619 | 5.99 | 390 | 0.9915 | 0.6867 |
|
75 |
+
| 0.6241 | 6.99 | 455 | 0.7895 | 0.76 |
|
76 |
+
| 0.497 | 7.99 | 520 | 0.6616 | 0.8038 |
|
77 |
+
| 0.4709 | 8.99 | 585 | 0.5282 | 0.8543 |
|
78 |
+
| 0.394 | 9.99 | 650 | 0.5447 | 0.8429 |
|
79 |
+
| 0.343 | 10.99 | 715 | 0.5108 | 0.8486 |
|
80 |
+
| 0.3482 | 11.99 | 780 | 0.5224 | 0.8505 |
|
81 |
+
| 0.2576 | 12.99 | 845 | 0.4796 | 0.8743 |
|
82 |
+
| 0.1837 | 13.99 | 910 | 0.5008 | 0.8571 |
|
83 |
+
| 0.1904 | 14.99 | 975 | 0.4366 | 0.8790 |
|
84 |
+
| 0.1458 | 15.99 | 1040 | 0.4320 | 0.8990 |
|
85 |
+
| 0.1575 | 16.99 | 1105 | 0.4059 | 0.8952 |
|
86 |
+
| 0.0992 | 17.99 | 1170 | 0.4362 | 0.8952 |
|
87 |
+
| 0.0858 | 18.99 | 1235 | 0.4210 | 0.8971 |
|
88 |
+
| 0.0704 | 19.99 | 1300 | 0.4368 | 0.8981 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.25.1
|
94 |
+
- Pytorch 1.13.1+cu117
|
95 |
+
- Datasets 2.11.0
|
96 |
+
- Tokenizers 0.13.2
|