Upload finetune_scikitllm.py
Browse files- finetune_scikitllm.py +236 -0
finetune_scikitllm.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
#This is the script used to finetune the scikit-llm model.
|
5 |
+
#It also contains all the hyperparameters used for training and should be fully reproducible.
|
6 |
+
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
|
9 |
+
print(device)
|
10 |
+
|
11 |
+
|
12 |
+
from datasets import load_dataset
|
13 |
+
from transformers import (
|
14 |
+
AutoModelForCausalLM,
|
15 |
+
AutoTokenizer,
|
16 |
+
BitsAndBytesConfig,
|
17 |
+
HfArgumentParser,
|
18 |
+
TrainingArguments,
|
19 |
+
pipeline,
|
20 |
+
logging,
|
21 |
+
LlamaTokenizerFast
|
22 |
+
)
|
23 |
+
from peft import LoraConfig, PeftModel, get_peft_model
|
24 |
+
from trl import SFTTrainer
|
25 |
+
|
26 |
+
# We use a previously finetuned model of Mistral, Mistral-Hermes.
|
27 |
+
#It already includes many instruction-based features (including the chatml syntax) that makes it easier to finetune.
|
28 |
+
model_name = "mistral-hermes-2.5"
|
29 |
+
|
30 |
+
torch.cuda.empty_cache()
|
31 |
+
|
32 |
+
# The name of the model.
|
33 |
+
new_model_name = "mistral-skikit-reference"
|
34 |
+
|
35 |
+
# The output directory where the model predictions and checkpoints will be written
|
36 |
+
output_dir = "./mistral-skikit-reference"
|
37 |
+
|
38 |
+
# Tensorboard logs
|
39 |
+
tb_log_dir = "./mistral-skikit-reference/logs"
|
40 |
+
|
41 |
+
# The number of steps. Since we chose a lower learning rate, we took on a long training (8 epochs). Could be lower.
|
42 |
+
max_steps = 1200
|
43 |
+
|
44 |
+
# Les paramètres importants !!
|
45 |
+
per_device_train_batch_size = 4 #Number of batches to send per step. Optimal given our GPU vram.
|
46 |
+
learning_rate = 2e-5 #The most important hyperparmater. We take a lower value as mistral-hermes is already finetuned and we want to keep the capacities.
|
47 |
+
max_seq_length = 4096 #Context window length. Here we are constrained by Hermes, but Mistral is up to 8128 (32k in the new version)
|
48 |
+
save_steps = 1000 # Automated saving of the steps.
|
49 |
+
lr_scheduler_type = "linear" #Learning rate scheduler. Better to decrease the learning rate for long training. I prefer linear over to cosine as it is more predictable: easier to restart training if needed.
|
50 |
+
|
51 |
+
|
52 |
+
#Other parameters. I don't usually tweak thoses.
|
53 |
+
local_rank = -1
|
54 |
+
per_device_eval_batch_size = 1
|
55 |
+
gradient_accumulation_steps = 4
|
56 |
+
max_grad_norm = 0.3
|
57 |
+
weight_decay = 0.001
|
58 |
+
lora_alpha = 16
|
59 |
+
lora_dropout = 0.1
|
60 |
+
lora_r = 64
|
61 |
+
|
62 |
+
# Group sequences into batches with same length (saves memory and speeds up training considerably)
|
63 |
+
group_by_length = True
|
64 |
+
|
65 |
+
# Activate 4-bit precision base model loading
|
66 |
+
#We go back to 16-bit for inference.
|
67 |
+
#Currently this speeds up training significantly we nearly no quality impact.
|
68 |
+
use_4bit = True
|
69 |
+
|
70 |
+
# Activate nested quantization for 4-bit base models
|
71 |
+
use_nested_quant = False
|
72 |
+
|
73 |
+
# Compute dtype for 4-bit base models
|
74 |
+
bnb_4bit_compute_dtype = "float16"
|
75 |
+
|
76 |
+
# Quantization type (fp4 or nf4=
|
77 |
+
bnb_4bit_quant_type = "nf4"
|
78 |
+
|
79 |
+
# Number of training epochs
|
80 |
+
#(not used in practice)
|
81 |
+
num_train_epochs = 1
|
82 |
+
|
83 |
+
# Enable fp16 training
|
84 |
+
fp16 = True
|
85 |
+
|
86 |
+
# Enable bf16 training
|
87 |
+
bf16 = False
|
88 |
+
|
89 |
+
# Use packing dataset creating
|
90 |
+
packing = False
|
91 |
+
|
92 |
+
# Enable gradient checkpointing
|
93 |
+
gradient_checkpointing = True
|
94 |
+
|
95 |
+
# Optimizer to use, original is paged_adamw_32bit
|
96 |
+
optim = "paged_adamw_32bit"
|
97 |
+
|
98 |
+
# Fraction of steps to do a warmup for
|
99 |
+
warmup_ratio = 0.03
|
100 |
+
|
101 |
+
# Log every X updates steps
|
102 |
+
logging_steps = 1
|
103 |
+
|
104 |
+
# Load the entire model on the GPU 0
|
105 |
+
device_map = {"": 0}
|
106 |
+
|
107 |
+
# Visualize training
|
108 |
+
report_to = "tensorboard"
|
109 |
+
|
110 |
+
|
111 |
+
#2. Loading the tokenizer
|
112 |
+
peft_config = LoraConfig(
|
113 |
+
lora_alpha=lora_alpha,
|
114 |
+
lora_dropout=lora_dropout,
|
115 |
+
r=lora_r,
|
116 |
+
inference_mode=False,
|
117 |
+
task_type="CAUSAL_LM",
|
118 |
+
target_modules = ["q_proj", "v_proj"]
|
119 |
+
)
|
120 |
+
|
121 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
122 |
+
|
123 |
+
# This is the fix for fp16 training
|
124 |
+
tokenizer.pad_token = tokenizer.eos_token
|
125 |
+
|
126 |
+
#3. Preparing the dataset.
|
127 |
+
#This is the part most specific to the scikit model.
|
128 |
+
#We take an entire conversation, as both the input and the output are part of the same string of texts.
|
129 |
+
from datasets import load_dataset
|
130 |
+
|
131 |
+
def format_alpaca(sample):
|
132 |
+
prompt = f"{sample['conversation']}"
|
133 |
+
return prompt
|
134 |
+
|
135 |
+
# template dataset to add prompt to each sample
|
136 |
+
def template_dataset(sample):
|
137 |
+
sample["text"] = f"{format_alpaca(sample)}{tokenizer.eos_token}"
|
138 |
+
return sample
|
139 |
+
|
140 |
+
# Loading the data du dataset.
|
141 |
+
data_files = {"train": "skikit_administration.json"}
|
142 |
+
dataset = load_dataset("json", data_files=data_files, split="train")
|
143 |
+
|
144 |
+
# Shuffle the dataset
|
145 |
+
dataset_shuffled = dataset.shuffle(seed=42)
|
146 |
+
|
147 |
+
#Dataset parsing.
|
148 |
+
dataset = dataset.map(template_dataset, remove_columns=list(dataset.features))
|
149 |
+
|
150 |
+
print(dataset[40])
|
151 |
+
|
152 |
+
#4. Model import
|
153 |
+
|
154 |
+
# Load tokenizer and model with QLoRA configuration
|
155 |
+
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
|
156 |
+
|
157 |
+
bnb_config = BitsAndBytesConfig(
|
158 |
+
load_in_4bit=use_4bit,
|
159 |
+
bnb_4bit_quant_type=bnb_4bit_quant_type,
|
160 |
+
bnb_4bit_compute_dtype=compute_dtype,
|
161 |
+
bnb_4bit_use_double_quant=use_nested_quant,
|
162 |
+
)
|
163 |
+
|
164 |
+
if compute_dtype == torch.float16 and use_4bit:
|
165 |
+
major, _ = torch.cuda.get_device_capability()
|
166 |
+
if major >= 8:
|
167 |
+
print("=" * 80)
|
168 |
+
print("Your GPU supports bfloat16, you can accelerate training with the argument --bf16")
|
169 |
+
print("=" * 80)
|
170 |
+
|
171 |
+
model = AutoModelForCausalLM.from_pretrained(
|
172 |
+
model_name,
|
173 |
+
device_map=device_map,
|
174 |
+
quantization_config=bnb_config
|
175 |
+
)
|
176 |
+
|
177 |
+
model.config.use_cache = False
|
178 |
+
model.config.pretraining_tp = 1
|
179 |
+
|
180 |
+
#5. Fine-tuning (actually)
|
181 |
+
#We pass all the hyperparmeters, and are ready to go.
|
182 |
+
|
183 |
+
torch.cuda.empty_cache()
|
184 |
+
|
185 |
+
training_arguments = TrainingArguments(
|
186 |
+
output_dir=output_dir,
|
187 |
+
per_device_train_batch_size=per_device_train_batch_size,
|
188 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
189 |
+
gradient_checkpointing=True,
|
190 |
+
optim=optim,
|
191 |
+
save_steps=save_steps,
|
192 |
+
logging_steps=logging_steps,
|
193 |
+
learning_rate=learning_rate,
|
194 |
+
fp16=fp16,
|
195 |
+
bf16=bf16,
|
196 |
+
max_grad_norm=max_grad_norm,
|
197 |
+
max_steps=max_steps,
|
198 |
+
warmup_ratio=warmup_ratio,
|
199 |
+
group_by_length=group_by_length,
|
200 |
+
lr_scheduler_type=lr_scheduler_type,
|
201 |
+
report_to="tensorboard"
|
202 |
+
)
|
203 |
+
|
204 |
+
trainer = SFTTrainer(
|
205 |
+
model=model,
|
206 |
+
train_dataset=dataset,
|
207 |
+
peft_config=peft_config,
|
208 |
+
dataset_text_field="text",
|
209 |
+
max_seq_length=max_seq_length,
|
210 |
+
tokenizer=tokenizer,
|
211 |
+
args=training_arguments,
|
212 |
+
packing=packing
|
213 |
+
)
|
214 |
+
|
215 |
+
#Training:
|
216 |
+
trainer.train()
|
217 |
+
|
218 |
+
#Optionally, if we want to continue training (for instance if there was an issue):
|
219 |
+
#trainer.train(resume_from_checkpoint=True)
|
220 |
+
|
221 |
+
#6. Export the weights
|
222 |
+
model_to_save = trainer.model.module if hasattr(trainer.model, 'module') else trainer.model # Take care of distributed/parallel training
|
223 |
+
model_to_save.save_pretrained(new_model_name)
|
224 |
+
|
225 |
+
torch.cuda.empty_cache()
|
226 |
+
|
227 |
+
from peft import AutoPeftModelForCausalLM
|
228 |
+
|
229 |
+
model = AutoPeftModelForCausalLM.from_pretrained(new_model_name, device_map="auto", torch_dtype=torch.bfloat16)
|
230 |
+
model = model.merge_and_unload()
|
231 |
+
|
232 |
+
output_merged_dir = os.path.join(new_model_name, new_model_name)
|
233 |
+
model.save_pretrained(output_merged_dir, safe_serialization=True)
|
234 |
+
|
235 |
+
#We also save the tokenizer
|
236 |
+
tokenizer.save_pretrained(output_merged_dir)
|