professorf commited on
Commit
e9f53bd
·
verified ·
1 Parent(s): 9d6a7aa

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +138 -0
README.md ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ pipeline_tag: text-generation
7
+ tags:
8
+ - safetensors
9
+ - onnx
10
+ - transformers.js
11
+ ---
12
+
13
+ <hr>
14
+ <center>GGUF Quantized SmolLM2-1.7B Models<br>
15
+ by Professor Nick V. Flor<br>
16
+ For research reproducibility purposes</center>
17
+ <hr>
18
+
19
+ # SmolLM2
20
+
21
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/oWWfzW4RbWkVIo7f-5444.png)
22
+
23
+ ## Table of Contents
24
+
25
+ 1. [Model Summary](##model-summary)
26
+ 2. [Limitations](##limitations)
27
+ 3. [Training](##training)
28
+ 4. [License](##license)
29
+ 5. [Citation](##citation)
30
+
31
+ ## Model Summary
32
+
33
+ SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device.
34
+
35
+ SmolLM2 demonstrates significant advances over its predecessor SmolLM1, particularly in instruction following, knowledge, reasoning. The 360M model was trained on 4 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new filtered datasets we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).
36
+
37
+ The instruct model additionally supports tasks such as text rewriting, summarization and function calling (for the 1.7B) thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1).
38
+ You can find the SFT dataset here: https://huggingface.co/datasets/HuggingFaceTB/smol-smoltalk and finetuning code in the [ali] https://github.com/huggingface/alignment-handbook/tree/main/recipes/smollm2
39
+
40
+ For more details refer to: https://github.com/huggingface/smollm. You will find pre-training, post-training, evaluation and local inference code.
41
+
42
+
43
+ ### How to use
44
+
45
+ ### Transformers
46
+ ```bash
47
+ pip install transformers
48
+ ```
49
+
50
+ ```python
51
+ from transformers import AutoModelForCausalLM, AutoTokenizer
52
+ checkpoint = "HuggingFaceTB/SmolLM2-360M-Instruct"
53
+
54
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
55
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
56
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
57
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
58
+
59
+ messages = [{"role": "user", "content": "What is the capital of France."}]
60
+ input_text=tokenizer.apply_chat_template(messages, tokenize=False)
61
+ print(input_text)
62
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
63
+ outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
64
+ print(tokenizer.decode(outputs[0]))
65
+ ```
66
+
67
+ ### Chat in TRL
68
+ You can also use the TRL CLI to chat with the model from the terminal:
69
+ ```bash
70
+ pip install trl
71
+ trl chat --model_name_or_path HuggingFaceTB/SmolLM2-360M-Instruct --device cpu
72
+ ```
73
+
74
+ ## Evaluation
75
+
76
+ In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them.
77
+
78
+ ## Base Pre-Trained Model
79
+
80
+ | Metrics | SmolLM2-360M | Qwen2.5-0.5B | SmolLM-360M |
81
+ |:-------------------|:------------:|:------------:|:------------:|
82
+ | HellaSwag | **54.5** | 51.2 | 51.8 |
83
+ | ARC (Average) | **53.0** | 45.4 | 50.1 |
84
+ | PIQA | **71.7** | 69.9 | 71.6 |
85
+ | MMLU (cloze) | **35.8** | 33.7 | 34.4 |
86
+ | CommonsenseQA | **38.0** | 31.6 | 35.3 |
87
+ | TriviaQA | **16.9** | 4.3 | 9.1 |
88
+ | Winogrande | 52.5 | **54.1** | 52.8 |
89
+ | OpenBookQA | **37.4** | **37.4** | 37.2 |
90
+ | GSM8K (5-shot) | 3.2 | **33.4** | 1.6 |
91
+
92
+
93
+ ## Instruction Model
94
+
95
+ | Metric | SmolLM2-360M-Instruct | Qwen2.5-0.5B-Instruct | SmolLM-360M-Instruct |
96
+ |:-----------------------------|:---------------------:|:---------------------:|:---------------------:|
97
+ | IFEval (Average prompt/inst) | **41.0** | 31.6 | 19.8 |
98
+ | MT-Bench | 3.66 | **4.16** | 3.37 |
99
+ | HellaSwag | **52.1** | 48.0 | 47.9 |
100
+ | ARC (Average) | **43.7** | 37.3 | 38.8 |
101
+ | PIQA | **70.8** | 67.2 | 69.4 |
102
+ | MMLU (cloze) | **32.8** | 31.7 | 30.6 |
103
+ | BBH (3-shot) | 27.3 | **30.7** | 24.4 |
104
+ | GSM8K (5-shot) | 7.43 | **26.8** | 1.36 |
105
+
106
+
107
+ ## Limitations
108
+
109
+ SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.
110
+
111
+ ## Training
112
+
113
+ ### Model
114
+
115
+ - **Architecture:** Transformer decoder
116
+ - **Pretraining tokens:** 4T
117
+ - **Precision:** bfloat16
118
+
119
+ ### Hardware
120
+
121
+ - **GPUs:** 64 H100
122
+
123
+ ### Software
124
+
125
+ - **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main)
126
+
127
+ ## License
128
+
129
+ [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
130
+
131
+ ## Citation
132
+ ```bash
133
+ @misc{allal2024SmolLM2,
134
+ title={SmolLM2 - with great data, comes great performance},
135
+ author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf},
136
+ year={2024},
137
+ }
138
+ ```