Initial commit
Browse files- 1_Pooling/config.json +7 -0
- README.md +153 -0
- config.json +29 -0
- config_sentence_transformers.json +7 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
# ST-NLI-ca_paraphrase-multilingual-mpnet-base
|
12 |
+
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
+
|
15 |
+
It has been developed through further training of a multilingual fine-tuned model, paraphrase-multilingual-mpnet-base-v2, [paraphrase-multilingual-mpnet-base-v2] (https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) using NLI data. Specifically, it has been trained on two Catalan NLI datasets, [TE-ca] (https://huggingface.co/datasets/projecte-aina/teca) and the professional translation of XNLI into Catalan. The training employed the Multiple Negatives Ranking Loss with Hard Negatives, which leverages triplets composed of a premise, an entailed hypothesis, and a contradiction. It is important to note that, given this format, neutral hypotheses from the NLI datasets were not used for training. However, as a form of data augmentation, the model's training set was expanded by duplicating the triplets, wherein the order of the premise and entailed hypothesis was reversed, resulting in a total of 18,928 triplets.
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
+
|
31 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
For instance, to sort a list of sentences by their similarity to a reference sentence, the following code can be used:
|
37 |
+
|
38 |
+
```python
|
39 |
+
reference_sent = "Avui és un bon dia."
|
40 |
+
sentences = [
|
41 |
+
"M'agrada el dia que fa.",
|
42 |
+
"Tothom té un mal dia.",
|
43 |
+
"És dijous.",
|
44 |
+
"Fa un dia realment dolent",
|
45 |
+
]
|
46 |
+
|
47 |
+
reference_sent_embedding = model.encode(reference_sent)
|
48 |
+
similarity_scores = {}
|
49 |
+
for sentence in sentences:
|
50 |
+
sent_embedding = model.encode(sentence)
|
51 |
+
cosine_similarity = util.pytorch_cos_sim(reference_sent_embedding, sent_embedding)
|
52 |
+
similarity_scores[float(cosine_similarity.data[0][0])] = sentence
|
53 |
+
|
54 |
+
print(f"Sentences in order of similarity to '{reference_sent}' (from max to min):")
|
55 |
+
for i, (cosine_similarity,sent) in enumerate(dict(sorted(similarity_scores.items(), reverse=True)).items()):
|
56 |
+
print(f"{i}) '{sent}': {cosine_similarity}")
|
57 |
+
```
|
58 |
+
|
59 |
+
|
60 |
+
## Usage (HuggingFace Transformers)
|
61 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
62 |
+
|
63 |
+
```python
|
64 |
+
from transformers import AutoTokenizer, AutoModel
|
65 |
+
import torch
|
66 |
+
|
67 |
+
|
68 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
69 |
+
def mean_pooling(model_output, attention_mask):
|
70 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
71 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
72 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
73 |
+
|
74 |
+
|
75 |
+
# Sentences we want sentence embeddings for
|
76 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
77 |
+
|
78 |
+
# Load model from HuggingFace Hub
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
80 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
81 |
+
|
82 |
+
# Tokenize sentences
|
83 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
84 |
+
|
85 |
+
# Compute token embeddings
|
86 |
+
with torch.no_grad():
|
87 |
+
model_output = model(**encoded_input)
|
88 |
+
|
89 |
+
# Perform pooling. In this case, mean pooling.
|
90 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
91 |
+
|
92 |
+
print("Sentence embeddings:")
|
93 |
+
print(sentence_embeddings)
|
94 |
+
```
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
## Evaluation Results
|
99 |
+
|
100 |
+
We evaluated the model on the test set of the Catalan Semantic Text Similarity (STS) [STS-ca] (https://huggingface.co/datasets/projecte-aina/sts-ca) based on the similarity of the embeddings (Pearson correlation), and on two paraphrase identification tasks in Catalan: [Parafraseja] (https://huggingface.co/datasets/projecte-aina/Parafraseja) and the professional translation of PAWS into Catalan.
|
101 |
+
|
102 |
+
| STS-ca (Pearson) | Parafraseja (acc) | PAWS-ca (acc) |
|
103 |
+
|------------------|-------------------|---------------|
|
104 |
+
| 0.65 | 0.72 | 0.65 |
|
105 |
+
|
106 |
+
|
107 |
+
## Training
|
108 |
+
The model was trained with the parameters:
|
109 |
+
|
110 |
+
**DataLoader**:
|
111 |
+
|
112 |
+
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 147 with parameters:
|
113 |
+
```
|
114 |
+
{'batch_size': 128}
|
115 |
+
```
|
116 |
+
|
117 |
+
**Loss**:
|
118 |
+
|
119 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
120 |
+
```
|
121 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
122 |
+
```
|
123 |
+
|
124 |
+
Parameters of the fit()-Method:
|
125 |
+
```
|
126 |
+
{
|
127 |
+
"epochs": 1,
|
128 |
+
"evaluation_steps": 14,
|
129 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
130 |
+
"max_grad_norm": 1,
|
131 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
132 |
+
"optimizer_params": {
|
133 |
+
"lr": 2e-05
|
134 |
+
},
|
135 |
+
"scheduler": "WarmupLinear",
|
136 |
+
"steps_per_epoch": null,
|
137 |
+
"warmup_steps": 15,
|
138 |
+
"weight_decay": 0.01
|
139 |
+
}
|
140 |
+
```
|
141 |
+
|
142 |
+
|
143 |
+
## Full Model Architecture
|
144 |
+
```
|
145 |
+
SentenceTransformer(
|
146 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
147 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
148 |
+
)
|
149 |
+
```
|
150 |
+
|
151 |
+
## Citing & Authors
|
152 |
+
|
153 |
+
For further information, send an email to [email protected]
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/gpfs/projects/bsc88/huggingface/models/paraphrase-multilingual-mpnet-base-v2/",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "xlm-roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"output_past": true,
|
22 |
+
"pad_token_id": 1,
|
23 |
+
"position_embedding_type": "absolute",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.33.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 250002
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ccd79a44ad1889ba22714efdc6893a40a62708cc65c50f0e049d5862b448733
|
3 |
+
size 1112241321
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|